Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (11): 846-854    DOI: 10.11901/1005.3093.2022.589
ARTICLES Current Issue | Archive | Adv Search |
Creep Behavior and Fracture Characteristic of Austenitic Heat-Resistant Steel Sanicro25
LV Dechao, CAO Tieshan, CHENG Congqian, ZHOU Tongtong, ZHAO Jie()
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

LV Dechao, CAO Tieshan, CHENG Congqian, ZHOU Tongtong, ZHAO Jie. Creep Behavior and Fracture Characteristic of Austenitic Heat-Resistant Steel Sanicro25. Chinese Journal of Materials Research, 2023, 37(11): 846-854.

Download:  HTML  PDF(8626KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The creep behavior at 130~240 MPa /973~1023 K of Sanicro25 steel for ultra-supercritical power plants were investigated by OM, SEM and TEM. The results showed that the minimum creep rate increases with the increasing temperature and applied stress. Based on the characteristics of the minimum creep rate, the stress exponents of 7.6~8.2 and the apparent activation energy of 496.7~531.8 kJ/mol can be acquired for the creep process. Nano-scale Cu-rich phase and MX phase precipitated in the matrix imped the dislocation motion, thus resulted in the emerging of creep threshold stress. The creep threshold stresses can be estimated by the linear extrapolation method, and which decrease with the increase in temperature. By invoking the concept of the threshold stresses to modify the constitutive equation, $\dot{\varepsilon}_{\min }=A_{2}\left[\left(\sigma-\sigma_{\mathrm{th}}\right) / G\right]^{n} \exp (-Q / R T)$, the normalization of the minimum creep rate can be acquired at various temperatures; Meanwhile, the true stress exponent (n=5) and the true apparent activation energy (Q=286.6kJ/mol approximately equal to the γ-Fe self-diffusion activation energy) can be identified. The creep rate-controlling mechanism was determined to be dislocation climbing mechanism assisted by lattice self-diffusion.

Key words:  metallic materials      creep      deformation mechanism      Sanicro25 steel     
Received:  08 November 2022     
ZTFLH:  TG142.73  
Fund: National Natural Science Foundation of China(U1610256);National Natural Science Foundation of China(51901035)
Corresponding Authors:  ZHAO Jie, Tel: (0411)84709076, E-mail: jiezhao@dlut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.589     OR     https://www.cjmr.org/EN/Y2023/V37/I11/846

Fig.1  Austenitic heat-resistant steel (Sanicro25 steel) OM morphology
MaterialTemperature, T / K

Applied stress,

σ / MPa

Sanicro25 steel973180
220
240
998150
180
220
1023130
180
220
240
Table 1  Experimental parameters of Sanicro25 steel
Fig.2  Creep curve characteristics for Sanicro 25 steel (a) (b) at different applied stresses (c) (d) at different temperatures
Fig.3  Minimum creep rate as a function of stress and temperature for Sanicro25 steel (a) Minimum creep rate vs. applied stress; (b) Minimum creep rate vs. the reciprocal of temperature
Fig.4  Creep fracture life as a function of applied stress for Sanicro25 steel (a) Log-log plot of ruptured time vs. applied stress; (b) Larson-Miller parameter curve
Fig.5  Relationship between fracture life and minimum creep rate and damage characteristics of Sanicro25 steel (a) Monkman-Grant relationship (b) Damage parameters characteristics
Fig.6  Creep fracture plasticity characteristics of Sanicro25 steel (a) Fracture strain (b) Section shrinkage of different region
Fig.7  Creep cross-sectional and fracture morphology of Sanicro25 steel (T=973 K; σ=240 MPa) (a) OM cross-sectional morphology (b) SEM fracture morphology
Fig.8  TEM microstructural characteristics of Sanicro 25 steel after creep at 1023 K and 220 MPa (a) Interaction of dislocations with fine precipitates. HRTEM micrograph and corresponding to SAED pattern; (b) Cu-rich phase (c) Nb (C, N)
Fig.9  Threshold stresses of Sanicro25 steel calculated based on assumed creep mechanism at different temperatures (a) Viscous glide mechanism: n=3; (b) Dislocation climbing control mechanism: n=5
Assumed stress exponent, n

Temperature,

T/K

Threshold stress,

σth/MPa

Avg. correlation coeffcient

R2/pct

Avg. Activation energy,

Q/kJ·mol-1

3973138.5±1.90.986206.8±6.2
998122.4±1.3
102399.8±3.0
597382.9±3.90.995286.5±8.5
99869.7±1.4
102352.2±2.4
Table 2  Threshold stress analysis for creep of Sanicro25 steel
Fig.10  Bright-field TEM image of dislocation-fine precipitates interactions within the matrix at different temperature (a) 973 K-220 MPa; (b) 1023 K-220 MPa
Fig.11  True stress exponents and activation energy of Sanicro25 steel at different temperatures (a) Log-log plot of the minimum creep rate vs. effective stress (b) Semi-log plot of the ε˙m vs. the reciprocal temperature
Fig.12  minimum creep rate normalizated of Sanicro25 steel at various temperatures
1 Saidur R, Abdelaziz E A, Demirbas A, et al. A review on biomass as a fuel for boilers [J]. Renew. Sust. Energ. Rev., 2011, 15(5): 2262
doi: 10.1016/j.rser.2011.02.015
2 Yu H Y, Chi C Y. Precipitation behavior of Cu-rich phase in 18Cr9-Ni3CuNbN austenitic heat-resistant steel at early aging stage [J]. Chin. J. Mater. Res., 2015, 29(3): 195
于鸿垚, 迟成宇. 18Cr9Ni3CuNbN奥氏体耐热钢中富Cu相的早期析出行为 [J]. 材料研究学报, 2015, 29(3): 195
doi: 10.11901/1005.3093.2014.610
3 Guo Y, Wang C X, Li T J, et al. Microstructure and precipitates of alloy 617B used for 700℃ advanced ulta-supercritical power units [J]. Chin. J. Mater. Res., 2016, 30(11): 841
doi: 10.11901/1005.3093.2015.478
郭 岩, 王彩侠, 李太江 等. 700℃超超临界机组用617B镍基合金的组织结构和析出相 [J]. 材料研究学报, 2016, 30(11): 841
4 Polák J, Petráš R, Heczko M, et al. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature [J]. Mater. Sci. Eng. A. 2014, 615: 175
doi: 10.1016/j.msea.2014.07.075
5 Rutkowski B, Gil A. A Czyrska-Filemonowicz Microstructure and chemical composition of the oxide scale formed on the sanicro 25 steel tubes after fireside corrosion [J]. Corros. Sci., 2016, 102: 373
doi: 10.1016/j.corsci.2015.10.030
6 Lim J, Hwang I S, Kim J H. Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors [J]. J. Nucl. Mater., 2013, 441(1): 650
doi: 10.1016/j.jnucmat.2012.04.006
7 Korzhavyi P A, Sandström R. First-principles evaluation of the effect of alloying elements on the lattice parameter of a 23Cr25NiWCuCo austenitic stainless steel to model solid solution hardening contribution to the creep strength [J]. Mater. Sci. Eng. A. 2015, 626: 213
doi: 10.1016/j.msea.2014.12.057
8 Chai G, Forsberg U. 12 - Sanicro 25: An Advanced High-strength, Heat-resistant Austenitic Stainless Steel [M]. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, Woodhead Publishing, 2017: 391-421
9 Li Y, Wang X. Strengthening mechanisms and creep rupture behavior of advanced austenitic heat resistant steel SA-213 S31035 for A-USC power plants [J]. Mater. Sci. Eng. A. 2020, 775:138991
doi: 10.1016/j.msea.2020.138991
10 Zhang Y, Jing H, Xu L, et al. High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy [J]. Mater. Sci. Eng. A. 2017, 686: 102
doi: 10.1016/j.msea.2017.01.002
11 Zhang Y, Jing H, Xu L, et al. Microstructure and texture study on an advanced heat-resistant alloy during creep [J]. Mater. Charact., 2017, 130: 156
doi: 10.1016/j.matchar.2017.05.037
12 Song K, Zhao L, Xu L, et al. Dislocation creep modelling of Sanicro 25 based on microstructural evolution and particle hardening mechanism [J]. Theor. Appl. Fract. Mec., 2021, 112: 102893
doi: 10.1016/j.tafmec.2021.102893
13 Kloc L, Dymáček P, Sklenička V. High temperature creep of Sanicro 25 austenitic steel at low stresses [J]. Mater. Sci. Eng. A. 2018, 722: 88
doi: 10.1016/j.msea.2018.02.095
14 Zhao L, Song K, Zhang Y, et al. Creep rupture assessment of new heat-resistant Sanicro 25 steel using different life prediction approaches [J]. J. Mater. Eng. Perform., 2019, 28(12): 7464
doi: 10.1007/s11665-019-04478-1
15 Wang D Y, Wang L Y, Feng X, et al. Creep properties of pre-deformed F316 stainless steel [J]. Chin. J. Mater. Res., 2019, 33(7): 497
doi: 10.11901/1005.3093.2018.677
王冬颖, 王立毅, 冯 鑫 等. 一级应变硬化F316奥氏体不锈钢的高温蠕变性能 [J]. 材料研究学报, 2019, 33(7): 497
doi: 10.11901/1005.3093.2018.677
16 Li H F, Zhao J, Cheng C Q, et al. Prediction of high temperature creep deformation and rupture life on HP heat reisistanct alloy using Zc parameter [J]. J. Mater. Eng., 2018, 46(3): 112
李会芳, 赵 杰, 程从前 等. 基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法 [J]. 材料工程, 2018, 46(3): 112
doi: 10.11868/j.issn.1001-4381.2016.000354
17 He J, Sandström R, Vujic S. Creep, low cycle fatigue and creep-fatigue properties of a modified HR3C [J]. Proce. Struct. Integrity. 2016, 2: 871
18 Kassner M E. Chapter 1-Fundamentals of Creep in Materials [M]. Fundamentals of Creep in Metals and Alloys (Third Edition), Butterworth-Heinemann, Boston, 2015: 1-6
19 Alomari A S, Kumar N, Murty K L. Creep behavior and microstructural evolution of a Fe-20Cr-25Ni (mass percent) austenitic stainless steel (Alloy 709) at elevated temperatures [J]. Metall. Mater. Trans. A. 2019, 50(2): 641
20 Park D B, Hong S M, Lee K H, et al. High-temperature creep behavior and microstructural evolution of an 18Cr9Ni3CuNbVN austenitic stainless steel [J]. Mater. Charact., 2014, 93: 52
doi: 10.1016/j.matchar.2014.03.012
21 Ou P, Li L, Xie X F, et al. Steady-State Creep Behavior of Super304H Austenitic Steel at Elevated Temperatures [J]. Acta. Metall. Sin-Engl. 2015, 28(11): 1336
doi: 10.1007/s40195-015-0331-8
22 Meng L J, Sun J, Xing H. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures [J]. J. Nucl. Mater., 2012, 427(1): 116
doi: 10.1016/j.jnucmat.2012.04.016
23 Guo Q Y, Li Y M, Chen B, et al. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel [J]. Acta Metall. Sin., 2021, 57(01): 82
郭倩颖, 李彦默, 陈 斌 等. 高温时效处理对S31042耐热钢组织和蠕变性能的影响 [J]. 金属学报, 2021, 57(01): 82
24 Latha S, Mathew M D, Parameswaran P, et al. Creep behaviour of 14Cr-15Ni-Ti stainless steel at 923K [J]. Mater. Sci. Eng. A, 2010, 527(20): 5167
doi: 10.1016/j.msea.2010.04.043
25 Wang C Y, Cepeda-Jiménez C M, Pérez-Prado M T. Dislocation-particle interactions in magnesium alloys [J]. Acta Mater., 2020, 194: 190
doi: 10.1016/j.actamat.2020.04.055
26 Arzt E, Ashby M F. Threshold stresses in materials containing dispersed particles [J]. Scrip. Mater., 1982, 16(11): 1285
27 Ding Z, Zhang J, Wang C S, et al. Dislocation configuration in DZ125 Ni-based superalloy after high temperature stress rupture [J]. Acta Metall. Sin., 2011, 47(01): 47
丁 智, 张 军, 王常帅 等. DZ125镍基高温合金高温持久断裂后的位错组态 [J]. 金属学报. 2011, 47(01): 47
28 Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Woodhead Publishing, 2010: 52-53
29 Murty K L, Mohamed F A, Dorn J E. Viscous glide, dislocation climb and newtonian viscous deformation mechanisms of high temperature creep in Al-3Mg [J]. Acta. Mater., 1972, 20(8): 1009
doi: 10.1016/0001-6160(72)90135-6
30 Murty K L, Dentel G, Britt J. Effect of temperature on transitions in creep mechanisms in class-A alloys [J]. Mater. Sci. Eng. A, 2005, 410-411: 28
doi: 10.1016/j.msea.2005.08.006
31 Yuan C, Guo J T, Yang H C. Resistant stress for creep in cast nickel-base superalloys [J]. Acta Metall. Sin., 2002, 11: 1149
袁 超, 郭建亭, 杨洪才. 铸造镍基高温合金的蠕变阻力 [J]. 金属学报, 2002, 11: 1149
32 Alomari A S, Kumar N, Murty K L. Serrated yielding in an advanced stainless steel Fe-25Ni-20Cr (wt%) [J]. Mater. Sci. Eng. A, 2019, 751: 292
doi: 10.1016/j.msea.2019.02.023
33 Maruyama K, 8-Fundamental Aspects of Creep Deformation and Deformation Mechanism Map [M]. Creep-Resistant Steels, Woodhead Publishing 2008: 265-278
34 Ovid'ko I A. 14-Enhanced Ductility and Its Mechanisms in Nanocrystalline Metallic Materials [M]. Nanostructured Metals and Alloys, Woodhead Publishing 2011: 430-458
35 Li Y, Mohamed F A. An investigation of creep behavior in an SiC 2124 Al composite [J]. Acta Mater., 1997, 45(11): 4775
doi: 10.1016/S1359-6454(97)00130-4
36 Vo N Q, Bayansan D, Sanaty-Zadeh A, et al. Effect of Yb microadditions on creep resistance of a dilute Al-Er-Sc-Zr alloy [J]. Materialia, 2018, 4: 65
doi: 10.1016/j.mtla.2018.08.030
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!