Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (8): 609-616    DOI: 10.11901/1005.3093.2021.451
ARTICLES Current Issue | Archive | Adv Search |
Effect of He Ion Irradiation on Microstructure and Properties of CLAM Steel Weld
LIU Dan1, LEI Yucheng1(), ZHANG Weiwei1, LI Tianqing1, YAO Yiqiang2, DING Xiangbin2
1.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2.China General Nuclear Power Corporation, Shenzhen 518000, China
Cite this article: 

LIU Dan, LEI Yucheng, ZHANG Weiwei, LI Tianqing, YAO Yiqiang, DING Xiangbin. Effect of He Ion Irradiation on Microstructure and Properties of CLAM Steel Weld. Chinese Journal of Materials Research, 2022, 36(8): 609-616.

Download:  HTML  PDF(19743KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to explore the mechanism of the influence of ion irradiation on the microstructure and properties of as-welded and quenched and tempered welds, the welds of Low Activation Martensitic (CLAM) steel were subjected to He ion irradiation at room temperature of 70 keV. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Continuous Stiffness Measurement (CSM) detection methods were utilized to investigate the changes in microstructure and properties of CLAM steel welds before and after ion irradiation. The results show that the size and number density of black holes on the welds' surface after irradiation increased with the rising irradiation dose; at the irradiation dose of 1×1017 ions·cm-2, the sizes of dislocation loops formed in the two welds were 18.97 nm and 15.73 nm respectively and the number densities were 2.24×1021 m-3 and 1.78×1021 m-3 respectively; the irradiation swelling rates caused by helium bubbles were 1.7% and 0.4% respectively; the radiation hardening rate caused by irradiation defects (dislocation loops and helium bubbles) were 49.0% and 29.9%, respectively. However, compared with as-welded weld, the irradiation damage of quenched and tempered weld was relatively weaker after He ion irradiation. To a certain extent, it showed that the anti-irradiation performance of the weld after quenched and tempered was improved.

Key words:  metallic materials      irradiation hardening      ion irradiation      quenched and tempered treatment      CLAM steel welds     
Received:  13 August 2021     
ZTFLH:  TL341  
Fund: National Natural Science Foundation of China(51875264)
About author:  LEI Yucheng, Tel: (0511)88790798, E-mail: yclei@ujs.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.451     OR     https://www.cjmr.org/EN/Y2022/V36/I8/609

ElementsCCrWVMnTaNiSiSPFe
Content0.128.91.440.200.350.150.020.080.003<0.0005Bal.
Table 1  Chemical composition of CLAM steel (mass fraction, %)
Fig.1  Variation curve of irradiation damage with ion implantation depth
Fig.2  SEM morphological changes of two kinds of weld surfaces under different irradiation doses (a, c, e, g) 0, 5×1015, 5×1016, 1×1017 ions·cm-2 of as-welded welds; (b, d, f, h) 0, 5×1015, 5×1016, 1×1017 ions·cm-2 of quenched and tempered welds
Fig.3  Optical and TEM microstructure observation of welds and TEM-EDX analysis of carbides before irradiation (a, c) as-welded weld; (b, d) quenched and tempered weld; (e) Cr-rich M23C6 carbides; (f) Ta-rich MC particles
Fig.4  Dislocation loops distribution and size and number density statistics of irradiated welds (a, c, e) as-welded welds; (b, d, f)quenched and tempered welds
Fig.5  Helium bubbles distribution and size and number density statistics of irradiated welds (a, c) as-welded welds;(b, d)quenched and tempered welds
Fig.6  Nano-hardness vs. indentation depth after different implanted ion fluence (a, c) as-welded welds; (b, d) quenched and tempered welds
Fluence/ions·cm-205×10155×10161×1017
H0/GPaAs-welded weld5.15.697.037.6
H0/GPaQuenched and tempered weld3.543.764.264.6
Table 2  The real hardness value H0 of welds' irradiated layer based on the Nix-Gao model
Fig.7  Relationship between nano-hardness value of as-welded and quenched and tempered welds and irradiation damage
1 Holdren J P. Fusion energy in context: Its Fitness for the long term [J]. Sci, 1978, 200: 168
2 Fu Z Y, Wang Z Q, Liu P P, et al. Irradiation hardening and defects distribution in CLAM steel under deuterium and helium ion irradiation [J]. Chin. J. Mater. Res., 2016, 30(9): 641
付振宇, 王泽群, 刘平平 等. 氘和氦离子辐照下CLAM钢的辐照硬化与微结构演变 [J]. 材料研究学报, 2016, 30(9): 641
3 Abdou M A, Morley N B, Molentsev S, et al. Blanket/first wall challenges and required R&D on the pathway to DEMO [J]. Fusion Eng. Des., 2015, 100: 2
doi: 10.1016/j.fusengdes.2015.07.021
4 Liu P P, Zhan Q, Fu Z Y, et al. Surface and internal microstructure damage of He-ion-irradiated CLAM steel studied by cross-sectional transmission electron microscopy [J]. J. Alloys Compd., 2015, 649: 859
doi: 10.1016/j.jallcom.2015.07.177
5 Peng L, Huang Q Y, Wu Y C, et al. In-situ observation of dislocation loop induced by electron irradiation on china low activation martensitic steel[J]. A. Eng. Sci. Tech., 2007, 41: 407
彭 蕾, 黄群英, 吴宜灿 等. 中国低活化马氏体钢在电子辐照下产生位错环的原位观察 [J]. 原子能科学技术, 2007, 41: 407
6 Jiang S, Peng L, Ge H, et al. He and H irradiation effects on the nanoindentation hardness of CLAM steel [J]. J. Nucl. Mater, 2014, 455(1): 335
doi: 10.1016/j.jnucmat.2014.06.053
7 Zhao F, Qiao J S, Huang Y N, et al. Effect of irradiation temperature on void swelling of China Low Activation Martensitic steel (CLAM) [J]. Mater. Charact., 2008, 59 (3): 344
doi: 10.1016/j.matchar.2007.01.014
8 Hu J, Jiang Z Z, Huang J H, et al. Effect of heat treatment on microstructure and impact toughness of CLAM steel electron beam weld [J]. Tran. China Welding Ins., 2012, 33(11): 67
胡 杰, 姜志忠, 黄继华 等. 热处理工艺对CLAM钢电子束焊缝显微组织与冲击韧性的影响 [J]. 焊接学报, 2012, 33(11): 67
9 Stoller R E, Toloczko M B, Was G S, et al. On the use of SRIM for computing radiation damage exposure [J]. Nucl. Instrum. Methods Phys. Res. Sect. B, 2013, 310: 75
doi: 10.1016/j.nimb.2013.05.008
10 Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J]. J. Mater. Res., 2004, 19(1): 3
doi: 10.1557/jmr.2004.19.1.3
11 Ni K, Ma Q, Wan H, et al. Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys [J]. Mater. Res. Express, 2018, 5(2): 026514
12 Cai J, Zou Y, Wan M Z, et al. Rapid preparation and characterization of surface microstructures of AISI 304L austenitic stainless steel by high-current pulsed electron beam [J]. Chin. J High Pressure Phys., 2012, 26(6): 693
蔡 杰, 邹 阳, 万明珍 等. AISI 304L奥氏体不锈钢表面微孔结构的强流脉冲电子束快速制备与表征 [J]. 高压物理学报, 2012, 26(6): 693
13 Liu S, Huang Q, Lei P, et al. Microstructure and its influence on mechanical properties of CLAM steel [J]. Fusion Eng. Des., 2012, 87(9): 1628
doi: 10.1016/j.fusengdes.2012.06.008
14 Bhattacharya A, Meslin E, Henry J, et al. Chromium enrichment on the habit plane of dislocation loops in ion-irradiated high-purity Fe-Cr alloys [J]. Acta Mater., 2014, 78(1): 394
doi: 10.1016/j.actamat.2014.06.050
15 Li Meimei, Kirk M A, Baldo P M, et al. Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling [J]. Philos. Mag., 2012, 92(16): 2048
doi: 10.1080/14786435.2012.662601
16 Oka H, Watanabe M, Kinoshita H, et al. In situ observation of damage structure in ODS austenitic steel during electron irradiation [J]. J. Nucl. Mater., 2011, 417(1-3): 279
doi: 10.1016/j.jnucmat.2010.12.156
17 Brimbal D, Décamps B, Barbu A, et al. Dual-beam irradiation of α-iron: Heterogeneous bubble formation on dislocation loops [J]. J. Nucl. Mater., 2011, 418(1-3): 313
doi: 10.1016/j.jnucmat.2011.06.048
18 Evans J H. The role of implanted gas and lateral stress in blister formation mechanisms [J]. J. Nucl. Mater., 1978, 76-77: 228
doi: 10.1016/0022-3115(78)90145-9
19 Toloczko M B, Garner F A, Voyevodin V N, et al. Induced swelling of ODS ferritic alloy MA957 tubing to 500 DPA [J]. J. Nucl. Mater., 2014, 453: 323
doi: 10.1016/j.jnucmat.2014.06.011
20 Fave L, Pouchon M A, Döbeli M, et al. Helium ion irradiation induced swelling and hardening in commercial and experimental ODS steels [J]. J. Nucl. Mater., 2014, 445(1-3): 235
doi: 10.1016/j.jnucmat.2013.11.004
21 Nix W D, Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46(3): 411
doi: 10.1016/S0022-5096(97)00086-0
22 Kiener D, Minor A M, Anderoglu O, et al. Application of small-scale testing for investigation of ion-beam-irradiated materials [J]. J. Mater. Res., 2012, 27(21): 2724
doi: 10.1557/jmr.2012.303
23 Kasada R, Takayama Y, Yabuuchi K, et al. A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques [J]. Fusion Eng. Des., 2011, 86(9-11): 2658
doi: 10.1016/j.fusengdes.2011.03.073
24 Yabuuchi K, Saito M, Kasada R, et al. Neutron irradiation hardening and microstructure changes in Fe-Mn binary alloys [J]. J. Nucl. Mater., 2011, 414(3): 498
doi: 10.1016/j.jnucmat.2011.05.008
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!