|
|
Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints |
CHEN Jie1, LI Hongying1( ), ZHOU Wenhao2, ZHANG Qingxue2, TANG Wei2, LIU Dan2 |
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China 2.Xiangtan Iron & Steel Co. Ltd. of Hunan Valin, Xiangtan 411101, China |
|
Cite this article:
CHEN Jie, LI Hongying, ZHOU Wenhao, ZHANG Qingxue, TANG Wei, LIU Dan. Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints. Chinese Journal of Materials Research, 2022, 36(8): 617-627.
|
Abstract Welded joints of Q1100 ultra high strength steel were made via gas shielded arc welding with welding heat inputs of 10 kJ/cm and 15 kJ/cm respectively. The microstructure, mechanical properties and local corrosion behavior of welded joints were studied. The results show that the microstructure of weld zone for the two welded joints is mainly acicular ferrite and a small amount of granular bainite. The microstructure is lath bainite for the coarse grain zone, and lath bainite and granular bainite for the fine grain zone of the weld joints. The microstructure of the critical phase transition zone is a mixture of polygonal ferrite, Mayo islets and carbide. The charge transfer resistance of various portions of the two welded joints could be ranked as the following order: base metal > heat affected zone > weld zone. The base metal had the best corrosion resistance, followed by the heat affected zone, and the weld zone had the worst corrosion resistance. During the corrosion process, the weld zone was first corroded as an anode. After a certain time of corrosion, the corrosion position changed, and the anode corrosion area was transferred into the base metal, while the weld zone was protected as a cathode. The welded joint with heat input of 10 kJ/cm has better low temperature toughness and corrosion resistance. The impact energies are 46.5 J and 30.2 J for the weld zone and heat affected zone respectively at -40℃.
|
Received: 16 June 2021
|
|
Fund: Changsha-Zhuzhou-Xiangtan National Independent Innovation Demonstration Zone Project(2018XK2301) |
About author: LI Hongying, Tel: 13973118109, E-mail: lhying@csu.edu.cn
|
1 |
Haslberger P, Holly S, Ernst W, et al. Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa [J]. J. Mater. Sci., 2018, 53: 6968
doi: 10.1007/s10853-018-2042-9
|
2 |
Song X, Yang H F, Wang C, et al. Microstructures and properties of 1100 MPa grade ultra-high strength steel after heat treatments [J]. J. Iron Steel Res., 2019, 31: 592
|
|
宋 欣, 杨海峰, 王 川 等. 屈服强度1100 MPa级超高强钢热处理组织及性能 [J]. 钢铁研究学报, 2019, 31: 592
|
3 |
Wang Y Q, Liu X Y, Shi Y J. The fracture toughness of butt weld at low temperature of 960 MPa high-strength steel [J]. Chin. J. Mater. Res., 2013, 27: 237
|
|
王元清, 刘希月, 石永久. 960 MPa高强度钢材对接焊缝的低温断裂韧性 [J]. 材料研究学报, 2013, 27: 237
|
4 |
Cao C M, Gao Q, Zhang H C, et al. Research and application on welding process of Q890 high-strength steel [J]. Hot Work. Technol., 2016, 45(11): 207
|
|
曹成铭, 高 强, 张含臣 等. Q890高强钢焊接工艺研究与应用 [J]. 热加工工艺, 2016, 45(11): 207
|
5 |
Sadeghian M, Shamanian M, Shafyei A. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel [J]. Mater. Des., 2014, 60: 678
doi: 10.1016/j.matdes.2014.03.057
|
6 |
Chen L, Nie P L, Qu Z X, et al. Influence of heat input on the changes in the microstructure and fracture behavior of laser welded 800 MPa grade high-strength low-alloy steel [J]. J. Manuf. Process., 2020, 50: 132
doi: 10.1016/j.jmapro.2019.12.007
|
7 |
Deng L, Yin X H, Yuan Z T, et al. Effect of heat input on microstructure and properties of weld joints of 800 MPa grade high strength low alloy steel [J]. Hot Work. Technol., 2015, 44(1): 36
|
|
邓 磊, 尹孝辉, 袁中涛 等. 焊接热输入对800 MPa级低合金高强钢焊接接头组织性能的影响 [J]. 热加工工艺, 2015, 44(1): 36
|
8 |
Sun Q L, Cao B, Wu Y S. Electrochemical behavior of various micro-areas on the welded joint of Q235 steel [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 41
|
|
孙齐磊, 曹 备, 吴荫顺. Q235管线钢焊接接头微区电化学行为 [J]. 北京科技大学学报, 2009, 31: 41
|
9 |
Zhang T Y, Liu W, Chowwanonthapunya T, et al. Corrosion evolution and analysis of welded joints of structural steel performed in a tropical marine atmospheric environment [J]. J. Mater. Eng. Perform., 2020, 29: 5057
doi: 10.1007/s11665-020-05045-9
|
10 |
Wang L W, Du C W, Liu Z Y, et al. SVET Characterization of localized corrosion of welded X70 pipeline steel in acid solution [J]. Corros. Prot., 2012, 33: 935
|
|
王力伟, 杜翠薇, 刘智勇 等. X70钢焊接接头在酸性溶液中的局部腐蚀SVET研究 [J]. 腐蚀与防护, 2012, 33: 935
|
11 |
Chen X W, Wu J H, Wang J, et al. Progress in research on factors influencing galvanic corrosion behavior [J]. Corros. Sci. Prot. Technol., 2010, 22: 363
|
|
陈兴伟, 吴建华, 王 佳 等. 电偶腐蚀影响因素研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 363
|
12 |
Liu P, Han S G, Yi Y Y, et al. Corrosion behavior of welded joint of Q690 with CMT twin [J]. Int. J. Corros., 2018, 2018: 2368717
|
13 |
Hemmingsen T, Hovdan H, Sanni P, et al. The influence of electrolyte reduction potential on weld corrosion [J]. Electrochim. Acta, 2002, 47: 3949
doi: 10.1016/S0013-4686(02)00366-3
|
14 |
Li Y J. Welding Metallurgy [M]. Beijing: Chemical Industry Press, 2015: 160
|
|
李亚江. 焊接冶金原理 [M]. 北京: 化学工业出版社, 2015: 160
|
15 |
Zhang L, Wu S J, Sun G J, et al. Surface grain boundary characteristics and electrochemical behavior of hot rolled high Ni high strength steel [J]. Chin. J. Mater. Res., 2014, 28: 67
|
|
张 蕾, 吴素君, 孙国进 等. 热轧高Ni高强钢的表面晶界特征和电化学行为 [J]. 材料研究学报, 2014, 28: 67
|
16 |
Díaz-Fuentes M, Iza-Mendia A, Gutiérrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior [J]. Metall. Mater. Trans., 2003, 34A: 2505
|
17 |
Xu B, Ma C Y, Li L, et al. Effect of heat input on microstructure and property of weld joints of a 1200 MPa grade HSLA steel [J]. Chin. J. Mater. Res., 2017, 31: 129
|
|
徐 彬, 马成勇, 李 莉 等. 热输入对1200 MPa级HSLA钢焊缝组织性能的影响 [J]. 材料研究学报, 2017, 31: 129
|
18 |
Zhang X Z, Chen Y Q, Wang F H, et al. Low temperature impact toughness of welded joint of X70 pipeline steel after hardening and tempering [J]. Trans. Mater. Sci. Heat Treat., 2018, 39(6): 156
|
|
张侠洲, 陈延请, 王凤会 等. X70管线钢焊接接头调质处理后的低温冲击韧性 [J]. 材料热处理学报, 2018, 39(6): 156
|
19 |
Lu Y X. Research on the CO2 corrosion behavior of carbon steel welded joint and the development of corrosion resistance welding materials [D]. Tianjin: Tianjin University, 2017
|
|
路永新. 碳钢焊接接头CO2腐蚀行为及耐蚀焊材开发的研究 [D]. 天津: 天津大学, 2017
|
20 |
Wan X L, Li G Q, Wu K M. Microstructure characteristics and formation mechanism of acicular ferrite in high-strength low-alloy steels [J]. J. Iron Steel Res., 2016, 28(6): 1
doi: 10.1007/s42243-020-00463-4
|
|
万响亮, 李光强, 吴开明. 低合金高强钢针状铁素体组织特征和形成机理 [J]. 钢铁研究学报, 2016, 28(6): 1
|
21 |
Huang C, Huang F, Zhang Y, et al. Galvanic corrosion behavior for weld joint of high strength weathering steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 527
|
|
黄 宸, 黄 峰, 张 宇 等. 高强耐候钢焊接接头电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 527
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|