Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (8): 617-627    DOI: 10.11901/1005.3093.2021.360
ARTICLES Current Issue | Archive | Adv Search |
Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints
CHEN Jie1, LI Hongying1(), ZHOU Wenhao2, ZHANG Qingxue2, TANG Wei2, LIU Dan2
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.Xiangtan Iron & Steel Co. Ltd. of Hunan Valin, Xiangtan 411101, China
Cite this article: 

CHEN Jie, LI Hongying, ZHOU Wenhao, ZHANG Qingxue, TANG Wei, LIU Dan. Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints. Chinese Journal of Materials Research, 2022, 36(8): 617-627.

Download:  HTML  PDF(10685KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Welded joints of Q1100 ultra high strength steel were made via gas shielded arc welding with welding heat inputs of 10 kJ/cm and 15 kJ/cm respectively. The microstructure, mechanical properties and local corrosion behavior of welded joints were studied. The results show that the microstructure of weld zone for the two welded joints is mainly acicular ferrite and a small amount of granular bainite. The microstructure is lath bainite for the coarse grain zone, and lath bainite and granular bainite for the fine grain zone of the weld joints. The microstructure of the critical phase transition zone is a mixture of polygonal ferrite, Mayo islets and carbide. The charge transfer resistance of various portions of the two welded joints could be ranked as the following order: base metal > heat affected zone > weld zone. The base metal had the best corrosion resistance, followed by the heat affected zone, and the weld zone had the worst corrosion resistance. During the corrosion process, the weld zone was first corroded as an anode. After a certain time of corrosion, the corrosion position changed, and the anode corrosion area was transferred into the base metal, while the weld zone was protected as a cathode. The welded joint with heat input of 10 kJ/cm has better low temperature toughness and corrosion resistance. The impact energies are 46.5 J and 30.2 J for the weld zone and heat affected zone respectively at -40℃.

Key words:  metallic materials      Q1100 ultra high strength steel      scanning vibrating electrode technique      heat input      welded joint      corrosion resistance     
Received:  16 June 2021     
ZTFLH:  TG172.2  
Fund: Changsha-Zhuzhou-Xiangtan National Independent Innovation Demonstration Zone Project(2018XK2301)
About author:  LI Hongying, Tel: 13973118109, E-mail: lhying@csu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.360     OR     https://www.cjmr.org/EN/Y2022/V36/I8/617

CSiMnPSNbVTiNiCrMoBAlFe
0.150.301.120.0090.0020.0220.0530.0180.320.210.540.00180.03Bal.
Table 1  Chemical composition of experimental steel (mass fraction, %)
Fig.1  SEM photograph of original microstructure of the experimental steel
Fig.2  Shape and sizes of the steel plate for welding experiment
Fig.3  Illustration of samples cut from the section of welded joint
Fig.4  Illustration of samples cut from the surface of welded joint
Fig.5  Schematic diagram of sealing of the sample for electrochemical test
Fig.6  SEM photos of the weld zones under the heat input conditions of (a) 10 kJ/cm and (b) 15 kJ/cm
Fig.7  SEM photos of the fusion zones under the heat input conditions of (a) 10 kJ/cm and (b) 15 kJ/cm
Fig.8  SEM photos of the heat affected zones of the welded joints at (a, c, e) 10 kJ/cm and (b, d, f) 15 kJ/cm
Fig.9  (a, c) Nyquist and (b, d) Bode plots of two welded joints with the heat inputs of (a, b) 10 kJ/cm and (c, d) 15 kJ/cm
Fig.10  Hardness profiles of two welded joints with the heat inputs of (a) 10 kJ/cm and (b) 15 kJ/cm
Fig.11  Comparison of -40℃ impact energies of two heat input welded joints
Fig.12  Equivalent circuit diagram
Heat inputDifferent regionsRs/Ω·cm2Rt/Ω·cm2Y0-1·cm-2·s-nn
10 kJ/cmHAZ7.6922423.609×10-40.8297
WZ11.9819222.485×10-40.8365
BM13.4725403.687×10-40.8326
15 kJ/cmHAZ8.5920863.809×10-40.8392
WZ9.4618833.443×10-40.8322
BM13.4725403.687×10-40.8326
Table 2  Fitting electrochemical parameters of EIS of two welded joints
Fig.13  Surface current density distribution and macroscopic corrosion morphology of 10 kJ/cm welded joints after corrosion for different time: (a) 2 h; (b) 5 h; (c) 8 h; (d) 20 h; (e) corrosion morphology
Fig.14  Surface current density maps of the 10 kJ/cm welded joint after corrosion for (a) 2 h, (b) 5 h, (c) 8 h and (d) 20 h; and (e) macroscopic morphology after 20 h corrosion
Fig.15  Average corrosion current distribution curves of the surfaces of two welded joints with the heat inputs of (a) 10 kJ/cm and (b) 15 kJ/cm
1 Haslberger P, Holly S, Ernst W, et al. Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa [J]. J. Mater. Sci., 2018, 53: 6968
doi: 10.1007/s10853-018-2042-9
2 Song X, Yang H F, Wang C, et al. Microstructures and properties of 1100 MPa grade ultra-high strength steel after heat treatments [J]. J. Iron Steel Res., 2019, 31: 592
宋 欣, 杨海峰, 王 川 等. 屈服强度1100 MPa级超高强钢热处理组织及性能 [J]. 钢铁研究学报, 2019, 31: 592
3 Wang Y Q, Liu X Y, Shi Y J. The fracture toughness of butt weld at low temperature of 960 MPa high-strength steel [J]. Chin. J. Mater. Res., 2013, 27: 237
王元清, 刘希月, 石永久. 960 MPa高强度钢材对接焊缝的低温断裂韧性 [J]. 材料研究学报, 2013, 27: 237
4 Cao C M, Gao Q, Zhang H C, et al. Research and application on welding process of Q890 high-strength steel [J]. Hot Work. Technol., 2016, 45(11): 207
曹成铭, 高 强, 张含臣 等. Q890高强钢焊接工艺研究与应用 [J]. 热加工工艺, 2016, 45(11): 207
5 Sadeghian M, Shamanian M, Shafyei A. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel [J]. Mater. Des., 2014, 60: 678
doi: 10.1016/j.matdes.2014.03.057
6 Chen L, Nie P L, Qu Z X, et al. Influence of heat input on the changes in the microstructure and fracture behavior of laser welded 800 MPa grade high-strength low-alloy steel [J]. J. Manuf. Process., 2020, 50: 132
doi: 10.1016/j.jmapro.2019.12.007
7 Deng L, Yin X H, Yuan Z T, et al. Effect of heat input on microstructure and properties of weld joints of 800 MPa grade high strength low alloy steel [J]. Hot Work. Technol., 2015, 44(1): 36
邓 磊, 尹孝辉, 袁中涛 等. 焊接热输入对800 MPa级低合金高强钢焊接接头组织性能的影响 [J]. 热加工工艺, 2015, 44(1): 36
8 Sun Q L, Cao B, Wu Y S. Electrochemical behavior of various micro-areas on the welded joint of Q235 steel [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 41
孙齐磊, 曹 备, 吴荫顺. Q235管线钢焊接接头微区电化学行为 [J]. 北京科技大学学报, 2009, 31: 41
9 Zhang T Y, Liu W, Chowwanonthapunya T, et al. Corrosion evolution and analysis of welded joints of structural steel performed in a tropical marine atmospheric environment [J]. J. Mater. Eng. Perform., 2020, 29: 5057
doi: 10.1007/s11665-020-05045-9
10 Wang L W, Du C W, Liu Z Y, et al. SVET Characterization of localized corrosion of welded X70 pipeline steel in acid solution [J]. Corros. Prot., 2012, 33: 935
王力伟, 杜翠薇, 刘智勇 等. X70钢焊接接头在酸性溶液中的局部腐蚀SVET研究 [J]. 腐蚀与防护, 2012, 33: 935
11 Chen X W, Wu J H, Wang J, et al. Progress in research on factors influencing galvanic corrosion behavior [J]. Corros. Sci. Prot. Technol., 2010, 22: 363
陈兴伟, 吴建华, 王 佳 等. 电偶腐蚀影响因素研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 363
12 Liu P, Han S G, Yi Y Y, et al. Corrosion behavior of welded joint of Q690 with CMT twin [J]. Int. J. Corros., 2018, 2018: 2368717
13 Hemmingsen T, Hovdan H, Sanni P, et al. The influence of electrolyte reduction potential on weld corrosion [J]. Electrochim. Acta, 2002, 47: 3949
doi: 10.1016/S0013-4686(02)00366-3
14 Li Y J. Welding Metallurgy [M]. Beijing: Chemical Industry Press, 2015: 160
李亚江. 焊接冶金原理 [M]. 北京: 化学工业出版社, 2015: 160
15 Zhang L, Wu S J, Sun G J, et al. Surface grain boundary characteristics and electrochemical behavior of hot rolled high Ni high strength steel [J]. Chin. J. Mater. Res., 2014, 28: 67
张 蕾, 吴素君, 孙国进 等. 热轧高Ni高强钢的表面晶界特征和电化学行为 [J]. 材料研究学报, 2014, 28: 67
16 Díaz-Fuentes M, Iza-Mendia A, Gutiérrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior [J]. Metall. Mater. Trans., 2003, 34A: 2505
17 Xu B, Ma C Y, Li L, et al. Effect of heat input on microstructure and property of weld joints of a 1200 MPa grade HSLA steel [J]. Chin. J. Mater. Res., 2017, 31: 129
徐 彬, 马成勇, 李 莉 等. 热输入对1200 MPa级HSLA钢焊缝组织性能的影响 [J]. 材料研究学报, 2017, 31: 129
18 Zhang X Z, Chen Y Q, Wang F H, et al. Low temperature impact toughness of welded joint of X70 pipeline steel after hardening and tempering [J]. Trans. Mater. Sci. Heat Treat., 2018, 39(6): 156
张侠洲, 陈延请, 王凤会 等. X70管线钢焊接接头调质处理后的低温冲击韧性 [J]. 材料热处理学报, 2018, 39(6): 156
19 Lu Y X. Research on the CO2 corrosion behavior of carbon steel welded joint and the development of corrosion resistance welding materials [D]. Tianjin: Tianjin University, 2017
路永新. 碳钢焊接接头CO2腐蚀行为及耐蚀焊材开发的研究 [D]. 天津: 天津大学, 2017
20 Wan X L, Li G Q, Wu K M. Microstructure characteristics and formation mechanism of acicular ferrite in high-strength low-alloy steels [J]. J. Iron Steel Res., 2016, 28(6): 1
doi: 10.1007/s42243-020-00463-4
万响亮, 李光强, 吴开明. 低合金高强钢针状铁素体组织特征和形成机理 [J]. 钢铁研究学报, 2016, 28(6): 1
21 Huang C, Huang F, Zhang Y, et al. Galvanic corrosion behavior for weld joint of high strength weathering steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 527
黄 宸, 黄 峰, 张 宇 等. 高强耐候钢焊接接头电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 527
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!