Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (6): 454-460    DOI: 10.11901/1005.3093.2021.142
ARTICLES Current Issue | Archive | Adv Search |
Effect of Interfacial Strength on Thermal/Mechanical Properties of Flexible Epoxy/Clay Nanocomposites
ZHAO Peng1, DONG Yingjie1, LI Xiang1, CHEN Bin1(), ZHANG Ying2()
1.School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2.School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
Cite this article: 

ZHAO Peng, DONG Yingjie, LI Xiang, CHEN Bin, ZHANG Ying. Effect of Interfacial Strength on Thermal/Mechanical Properties of Flexible Epoxy/Clay Nanocomposites. Chinese Journal of Materials Research, 2022, 36(6): 454-460.

Download:  HTML  PDF(2990KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

First, two organic clays, manely reactive BBDMP30-clay and non-reactive CPDMP30-clay were synthesized, and then two epoxy resin/clay nanocomposites with different interfacial strength were prepared with the two organic clays as reinforcer respectively. The two epoxy resin/clay nanocomposites were characterized by transmission electron microscopy (TEM) and tensile test with dynamic mechanical analysis (DMA). Further, the effect of interfacial strength on mechanical properties were investigated. The results show that the two nanocomposites have almost the same random peeling structure. The reactive type BBDMP30-clay can improve the thermal/mechanical properties of the composites more effectively than the non-reactive type CPDMP30-clay. When the clay mass fraction is 3.5%, BBDMP30-clay can increase the tensile strength of nanocomposites by 250%, while CPDMP30-clay can only increase the tensile strength of nanocomposites by 190%. BBDMP30-clay increased the glass transition temperature (Tg) of the nanocomposites by 6.5℃, while CPDMP30-clay only increased the Tg by 2.5℃. These differences can be attributed to the difference of the interfacial strength of the two nanocomposites.

Key words:  composite      epoxy      clay      interface      mechanical properties     
Received:  15 February 2021     
ZTFLH:  TQ323.5  
Fund: 2019 Education Fund Item of Liaoning Province(LJ2019008);2021 Education Fund Item of Liaoning Province(LJKZ0441)
About author:  ZHANG Ying, Tel: (024)89383297, E-mail: syictzhang@qq.com
CHEN Bin, Tel: (024)89388092, E-mail: bchen63@163.com;

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.142     OR     https://www.cjmr.org/EN/Y2022/V36/I6/454

Fig.1  Reaction scheme of the synthesis of organic modifier
Fig.2  TEM micrographs of Epoxy/clay nanocomposite synthesized with 3.5% organoclays (a) CPDMP30-clay; (b) BBDMP30-clay
Fig.3  XRD patterns of pristine clay and the nanocomposites with 3.5% (mass fraction) organoclay
Fig.4  TGA curves of BBDMP30-clay and BBDMP30-clay-g-epoxy
Fig.5  Reaction equation of BBDMP30-clay with epoxy resin
Fig.6  Stress-strain curves of pristine epoxy polymer and of epoxy/clay nanocomposites with (a) epoxy/ BBDMP30-clay; (b) epoxy/CPDMP30-clay

Sample

(mass fraction)

Tensile strength/MPaStrain at break/%Modulus/MPa
Neat epoxy6.17±0.0299.33±1.158.59±0.93
1% CPMP30-clay6.94±0.2297.6±3.588.79±0.92
2% CPMP30-clay10.76±0.5294.33±0.3360.15±7.14
3% CPMP30-clay17.28±0.8492.2±7.05193±2.83
3.5% CPMP30-clay18.03±0.3779±2.65210.75±26.47
1% BBDMP30-clay10.66±0.6494.4±2.88133.5±19.09
2% BBDMP30-clay16.62±0.3192.2±4.44209.4±19.62
3% BBDMP30-clay21.05±0.5476.75±3.30397.67±52.08
3.5% BBDMP30-clay21.56±0.6472.8±2.17417.2±26.12
Table 1  Tensile properties of neat epoxy and epoxy/clay nanocomposites
Fig.7  tanδ versus temperature plots of neat epoxy polymer and of its nanocomposites
1 Pavlidou S, Papaspyrides C D. A review on polymer-layered silicate nanocomposites [J]. Prog. Polym. Sci., 2008, 33: 1119
doi: 10.1016/j.progpolymsci.2008.07.008
2 Okada A, Usuki A. Twenty years of polymer-clay nanocomposites [J]. Macromol. Mater. Eng., 2006, 291: 1449
doi: 10.1002/mame.200600260
3 Kotal M, Bhowmick A K. Polymer nanocomposites from modified clays: recent advances and challenges [J]. Prog. Polym. Sci., 2015, 51: 127
doi: 10.1016/j.progpolymsci.2015.10.001
4 Usuki A, Kojima Y, Kawasumi M, et al. Synthesis of nylon 6-clay hybrid [J]. J. Mat. Res., 1993, 8: 1179
doi: 10.1557/JMR.1993.1179
5 Manevitch O L, Rutledge G C. Elastic properties of a single Lamella of montmorillonite by molecular dynamics simulation [J]. J. Phys. Chem., 2004, 108B: 1428
6 Lu H J, Liang G Z, Ma X Y, et al. Epoxy/clay nanocomposites: further exfoliation of newly modified clay induced by shearing force of ball milling [J]. Polym. Int., 2004, 53: 1545
doi: 10.1002/pi.1596
7 Chen C G, Tolle T B. Fully exfoliated layered silicate epoxy nanocomposites [J]. J. Polym. Sci., 2004, 42B: 3981
8 Chen B, Liu J, Chen H B, et al. Synthesis of disordered and highly exfoliated epoxy/clay nanocomposites using organoclay with catalytic function via acetone-clay slurry method [J]. Chem. Mater., 2004, 16: 4864
doi: 10.1021/cm048922e
9 Zaman I, Le Q H, Kuan H C, et al. Interface-tuned epoxy/clay nanocomposites [J]. Polymer, 2011, 52: 497
doi: 10.1016/j.polymer.2010.12.007
10 Wei R, Wang X Q, Zhang X, et al. A Novel method for manufacturing high-performance layered silicate/epoxy nanocomposites using an epoxy-diamine adduct to enhance compatibility and interfacial reactivity [J]. Macromol. Mater. Eng., 2018, 303: 1800065
doi: 10.1002/mame.201800065
11 Yang L P, Phua S L, Teo J K H, et al. A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin [J]. ACS Appl. Mater. Interfaces, 2011, 3: 3026
doi: 10.1021/am200532j
12 Messersmith P B, Giannelis E P. Synthesis and characterization of layered silicate-epoxy nanocomposites [J]. Chem. Mater., 1994, 6: 1719
doi: 10.1021/cm00046a026
13 Brown J M, Curliss D, Vaia R A. Thermoset-layered silicate nanocomposites. Quaternary ammonium montmorillonite with primary diamine cured epoxies [J]. Chem. Mater., 2000, 12: 3376
doi: 10.1021/cm000477+
14 Chen B, Li J Y, Li X Y, et al. Achieving high thermal and mechanical properties of epoxy nanocomposites via incorporation of dopamine interfaced clay [J]. Polym. Compo., 2018, 39(): E2407
doi: 10.1002/pc.24716
15 Chen B, Pei X P, Xu Y, et al. Effect of reactive organic modifiers on thermal/mechanical properties of epoxy/clay nanocomposites [J]. Chin. J. Mater. Res., 2020, 34(3): 161
陈 斌, 裴鑫鹏, 徐 扬 等. 反应型有机修饰剂对环氧树脂/粘土纳米复合材料热/机械性能的影响 [J]. 材料研究学报, 2020, 34(3): 161
16 Wang W S, Chen H S, Wu Y W, et al. Properties of novel epoxy/clay nanocomposites prepared with a reactive phosphorus-containing organoclay [J]. Polymer, 2008, 49: 4826
doi: 10.1016/j.polymer.2008.08.019
17 Lin J J, Cheng I J, Chu C C. High compatibility of the poly(oxypropylene) amine-intercalated montmorillonite for epoxy [J]. Polym. J., 2003, 35: 411
doi: 10.1295/polymj.35.411
18 Li J X, Si C Y, Sun H C, et al. Reversible pH-controlled switching of an artificial antioxidant selenoenzyme based on pseudorotaxane formation and dissociation [J]. Chem. Commun., 2015, 51: 9987
doi: 10.1039/C5CC02038G
19 Zhang Y, Li X G, Chen B, et al. Highly exfoliated epoxy/clay nanocomposites: Mechanism of exfoliation and thermal/mechanical properties [J]. Compo. Struct., 2015, 132: 44
doi: 10.1016/j.compstruct.2015.05.017
20 Lu H B, Nutt S. Restricted relaxation in polymer nanocomposites near the glass transition [J]. Macromolecules, 2003, 36: 4010
doi: 10.1021/ma034049b
21 Zhang X G, Loo L S. Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites [J]. Macromolecules, 2009, 42: 5196
doi: 10.1021/ma9004154
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[4] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[5] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[12] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[13] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[14] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[15] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
No Suggested Reading articles found!