|
|
Effect of Interfacial Strength on Thermal/Mechanical Properties of Flexible Epoxy/Clay Nanocomposites |
ZHAO Peng1, DONG Yingjie1, LI Xiang1, CHEN Bin1( ), ZHANG Ying2( ) |
1.School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China 2.School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China |
|
Cite this article:
ZHAO Peng, DONG Yingjie, LI Xiang, CHEN Bin, ZHANG Ying. Effect of Interfacial Strength on Thermal/Mechanical Properties of Flexible Epoxy/Clay Nanocomposites. Chinese Journal of Materials Research, 2022, 36(6): 454-460.
|
Abstract First, two organic clays, manely reactive BBDMP30-clay and non-reactive CPDMP30-clay were synthesized, and then two epoxy resin/clay nanocomposites with different interfacial strength were prepared with the two organic clays as reinforcer respectively. The two epoxy resin/clay nanocomposites were characterized by transmission electron microscopy (TEM) and tensile test with dynamic mechanical analysis (DMA). Further, the effect of interfacial strength on mechanical properties were investigated. The results show that the two nanocomposites have almost the same random peeling structure. The reactive type BBDMP30-clay can improve the thermal/mechanical properties of the composites more effectively than the non-reactive type CPDMP30-clay. When the clay mass fraction is 3.5%, BBDMP30-clay can increase the tensile strength of nanocomposites by 250%, while CPDMP30-clay can only increase the tensile strength of nanocomposites by 190%. BBDMP30-clay increased the glass transition temperature (Tg) of the nanocomposites by 6.5℃, while CPDMP30-clay only increased the Tg by 2.5℃. These differences can be attributed to the difference of the interfacial strength of the two nanocomposites.
|
Received: 15 February 2021
|
|
Fund: 2019 Education Fund Item of Liaoning Province(LJ2019008);2021 Education Fund Item of Liaoning Province(LJKZ0441) |
About author: ZHANG Ying, Tel: (024)89383297, E-mail: syictzhang@qq.com CHEN Bin, Tel: (024)89388092, E-mail: bchen63@163.com;
|
1 |
Pavlidou S, Papaspyrides C D. A review on polymer-layered silicate nanocomposites [J]. Prog. Polym. Sci., 2008, 33: 1119
doi: 10.1016/j.progpolymsci.2008.07.008
|
2 |
Okada A, Usuki A. Twenty years of polymer-clay nanocomposites [J]. Macromol. Mater. Eng., 2006, 291: 1449
doi: 10.1002/mame.200600260
|
3 |
Kotal M, Bhowmick A K. Polymer nanocomposites from modified clays: recent advances and challenges [J]. Prog. Polym. Sci., 2015, 51: 127
doi: 10.1016/j.progpolymsci.2015.10.001
|
4 |
Usuki A, Kojima Y, Kawasumi M, et al. Synthesis of nylon 6-clay hybrid [J]. J. Mat. Res., 1993, 8: 1179
doi: 10.1557/JMR.1993.1179
|
5 |
Manevitch O L, Rutledge G C. Elastic properties of a single Lamella of montmorillonite by molecular dynamics simulation [J]. J. Phys. Chem., 2004, 108B: 1428
|
6 |
Lu H J, Liang G Z, Ma X Y, et al. Epoxy/clay nanocomposites: further exfoliation of newly modified clay induced by shearing force of ball milling [J]. Polym. Int., 2004, 53: 1545
doi: 10.1002/pi.1596
|
7 |
Chen C G, Tolle T B. Fully exfoliated layered silicate epoxy nanocomposites [J]. J. Polym. Sci., 2004, 42B: 3981
|
8 |
Chen B, Liu J, Chen H B, et al. Synthesis of disordered and highly exfoliated epoxy/clay nanocomposites using organoclay with catalytic function via acetone-clay slurry method [J]. Chem. Mater., 2004, 16: 4864
doi: 10.1021/cm048922e
|
9 |
Zaman I, Le Q H, Kuan H C, et al. Interface-tuned epoxy/clay nanocomposites [J]. Polymer, 2011, 52: 497
doi: 10.1016/j.polymer.2010.12.007
|
10 |
Wei R, Wang X Q, Zhang X, et al. A Novel method for manufacturing high-performance layered silicate/epoxy nanocomposites using an epoxy-diamine adduct to enhance compatibility and interfacial reactivity [J]. Macromol. Mater. Eng., 2018, 303: 1800065
doi: 10.1002/mame.201800065
|
11 |
Yang L P, Phua S L, Teo J K H, et al. A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin [J]. ACS Appl. Mater. Interfaces, 2011, 3: 3026
doi: 10.1021/am200532j
|
12 |
Messersmith P B, Giannelis E P. Synthesis and characterization of layered silicate-epoxy nanocomposites [J]. Chem. Mater., 1994, 6: 1719
doi: 10.1021/cm00046a026
|
13 |
Brown J M, Curliss D, Vaia R A. Thermoset-layered silicate nanocomposites. Quaternary ammonium montmorillonite with primary diamine cured epoxies [J]. Chem. Mater., 2000, 12: 3376
doi: 10.1021/cm000477+
|
14 |
Chen B, Li J Y, Li X Y, et al. Achieving high thermal and mechanical properties of epoxy nanocomposites via incorporation of dopamine interfaced clay [J]. Polym. Compo., 2018, 39(): E2407
doi: 10.1002/pc.24716
|
15 |
Chen B, Pei X P, Xu Y, et al. Effect of reactive organic modifiers on thermal/mechanical properties of epoxy/clay nanocomposites [J]. Chin. J. Mater. Res., 2020, 34(3): 161
|
|
陈 斌, 裴鑫鹏, 徐 扬 等. 反应型有机修饰剂对环氧树脂/粘土纳米复合材料热/机械性能的影响 [J]. 材料研究学报, 2020, 34(3): 161
|
16 |
Wang W S, Chen H S, Wu Y W, et al. Properties of novel epoxy/clay nanocomposites prepared with a reactive phosphorus-containing organoclay [J]. Polymer, 2008, 49: 4826
doi: 10.1016/j.polymer.2008.08.019
|
17 |
Lin J J, Cheng I J, Chu C C. High compatibility of the poly(oxypropylene) amine-intercalated montmorillonite for epoxy [J]. Polym. J., 2003, 35: 411
doi: 10.1295/polymj.35.411
|
18 |
Li J X, Si C Y, Sun H C, et al. Reversible pH-controlled switching of an artificial antioxidant selenoenzyme based on pseudorotaxane formation and dissociation [J]. Chem. Commun., 2015, 51: 9987
doi: 10.1039/C5CC02038G
|
19 |
Zhang Y, Li X G, Chen B, et al. Highly exfoliated epoxy/clay nanocomposites: Mechanism of exfoliation and thermal/mechanical properties [J]. Compo. Struct., 2015, 132: 44
doi: 10.1016/j.compstruct.2015.05.017
|
20 |
Lu H B, Nutt S. Restricted relaxation in polymer nanocomposites near the glass transition [J]. Macromolecules, 2003, 36: 4010
doi: 10.1021/ma034049b
|
21 |
Zhang X G, Loo L S. Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites [J]. Macromolecules, 2009, 42: 5196
doi: 10.1021/ma9004154
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|