Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (6): 461-470    DOI: 10.11901/1005.3093.2021.150
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging
YAN Fuzhao1,2, LI Jing1, XIONG Liangyin1, LIU Shi1()
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging. Chinese Journal of Materials Research, 2022, 36(6): 461-470.

Download:  HTML  PDF(15749KB)  Mobile PDF(1386KB)
Export:  BibTeX | EndNote (RIS)      
Abstract  

FeCr-ODS ferrite alloy was fabricated via a novel fabrication process of pre-oxidation treatment followed by powder forging proposed by the authors. The prepared alloy was characterized by means of SEM, XPS, EPMA and TEM techniques in terms of the generation, evolution of oxides on the surface and interior of the powder, as well as the type and distribution of oxide nanoparticles in the fabricated ODS ferrite alloy. The results show that an iron oxide film formed on the surface of powders during low temperature oxidation. By the subsequent heating process, the iron oxide could react with Y and Ti to form complex oxide Y-Ti-O nanoparticles. The evolution of oxide dispersoids during the course of fabrication was characterized to clarify the contribution of powder forging to dislocations and nanoscale precipitates. Fine Y2TiO5 nanoparticles uniformly distributed in the matrix, and a small number of Y2O3 particles aligned along the grain boundaries by this manufacturing method.

Key words:  synthesizing and processing technics for materials      FeCr-ODS ferrite alloy      powder forging      Y-Ti-O nanoparticles      formation mechanism      microstructure     
Received:  25 February 2021     
ZTFLH:  TB331  
About author:  LIU Shi, Tel: (024)23971470, E-mail: sliu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.150     OR     https://www.cjmr.org/EN/Y2022/V36/I6/461

PowderCrWYTiFe
Fe-Cr9.201.510.440.55Bal.
Table 1  Chemical composition of the atomized powder (mass fraction, %)
Fig.1  SEM results of oxidized powder surface: (a) powder surface morphology (low magnification), (b) powder surface morphology (high magnification), (c) line scanning results in Fig.1b
PointFeCrWYTiO
187.98.431.5200.571.58
286.698.571.550.660.52.03
384.18.291.491.100.584.44
488.618.981.590.010.510.3
Table 2  EDS of different points on powder surface (mass fraction, %)
Fig.2  Distribution of elements on the cross-section of oxidized powder (a) BSE image, (b) Fe, (c) Cr, (d) Y, (e) Ti, (f) O
Fig.3  AES depth profile of surface chemical composition of the oxidized powder
Fig.4  High-resolution XPS spectra of Fe (a), Cr (b), Y (c) and Ti (d) on the surface of oxidized powder at different etch depth
Fig.5  SEM image of the powder surface after heating to 1150℃
PointFeCrWYTiO
185.58.001.522.050.522.41
283.259.701.530.043.202.28
382.547.931.483.320.953.78
481.029.831.540.194.452.97
Table 3  EDS of different points on the powder surface after heating to 1150℃ (mass fraction, %)
Fig.6  Distribution of elements on the cross-section of oxidized powder after heating to 1150℃ (a) BSE image, (b) Fe, (c) Cr, (d) Y, (e) Ti, (f) O
Fig.7  AES depth profile of surface chemical composition of the oxidized powder after heating to 1150℃
Fig.8  High-resolution XPS spectra of Fe (a), Cr (b), Y (c) and Ti (d) on the surface of oxidized powder after heating to 1150℃ at different etch depth
Fig.9  Metallographic image of the alloy obtained by powder forging
Fig.10  TEM results of the alloy (a) nanoparticles distribution in the grain, (b) nanoparticles distribution near the grain boundary, (c) particle size distributions of dispersoids in the alloy
Fig.11  Configuration between dislocations and oxide nanoparticles in the alloy
Fig.12  Mapping results of precipitates in the alloy
Fig.13  TEM/HRTEM results of different precipitates in the alloy (a) SAED pattern of large particle in the alloy, (b) HRTEM image of small particle in the alloy, (c) corresponding FFT pattern of small particle
d1(011)/nmd2(121)/nmd3(110)/nmα12/(°)α23/(°)
Measured0.35000.29860.777222.33756.45
Y2TiO50.35140.29620.761723.3957.52
Table 4  Inter-planar spacing (d) and angles (α) of small particle and the possible indexing
1 Allen T, Busby J, Meyer M, et al. Materials challenges for nuclear systems [J]. Mater. Today, 2010, 13: 14
2 Karak S K, Chudoba T, Witczak Z, et al. Development of ultra high strength nano-Y2O3 dispersed ferritic steel by mechanical alloying and hot isostatic pressing [J]. Mater. Sci. Eng., 2011, 528A: 7475
3 Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488: 294
doi: 10.1038/nature11475
4 Grimes R W, Nuttall W J. Generating the option of a two-stage nuclear renaissance [J]. Science, 2010, 329: 799
doi: 10.1126/science.1188928 pmid: 20705854
5 Zhao Q, Yu L M, Liu Y C, et al. Evolution of Al-containing phases in ODS steel by hot pressing and annealing [J]. Powder Technol., 2017, 311: 449
doi: 10.1016/j.powtec.2017.02.016
6 Zhang Z B, Pantleon W. Response of oxide nanoparticles in an oxide dispersion strengthened steel to dynamic plastic deformation [J]. Acta Mater., 2018, 149: 235
doi: 10.1016/j.actamat.2018.02.042
7 Hoelzer D T, Unocic K A, Sokolov M A, et al. Influence of processing on the microstructure and mechanical properties of 14YWT [J]. J. Nucl. Mater., 2016, 471: 251
doi: 10.1016/j.jnucmat.2015.12.011
8 Brocq M, Radiguet B, Poissonnet S, et al. Nanoscale characterization and formation mechanism of nanoclusters in an ODS steel elaborated by reactive-inspired ball-milling and annealing [J]. J. Nucl. Mater., 2011, 409: 80
doi: 10.1016/j.jnucmat.2010.09.011
9 Chen C L, Dong Y M. Effect of mechanical alloying and consolidation process on microstructure and hardness of nanostructured Fe-Cr-Al ODS alloys [J]. Mater. Sci. Eng., 2011, 528A: 8374
10 Hong Z Y, Zhang X X, Yan Q Z, et al. A new method for preparing 9Cr-ODS steel using elemental yttrium and Fe2O3 oxygen carrier [J]. J. Alloys Compd., 2019, 770: 831
doi: 10.1016/j.jallcom.2018.08.196
11 Mansur L K, Rowcliffe A F, Nanstad R K, et al. Materials needs for fusion, Generation IV fission reactors and spallation neutron sources-similarities and differences [J]. J. Nucl. Mater., 2004, 329-333: 166
doi: 10.1016/j.jnucmat.2004.04.016
12 Tan L, Katoh Y, Tavassoli A A F, et al. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service [J]. J. Nucl. Mater., 2016, 479: 515
doi: 10.1016/j.jnucmat.2016.07.054
13 Bergner F, Hilger I, Virta J, et al. Alternative fabrication routes toward oxide-dispersion-strengthened steels and model alloys [J]. Metall. Trans., 2016, 47A: 5313
14 Schneibel J H, Shim S. Nano-scale oxide dispersoids by internal oxidation of Fe-Ti-Y intermetallics [J]. Mater. Sci. Eng., 2008, 488A: 134
15 Rieken J R, Anderson I E, Kramer M J, et al. Reactive gas atomization processing for Fe-based ODS alloys [J]. J. Nucl. Mater., 2012, 428: 65
doi: 10.1016/j.jnucmat.2011.08.015
16 Gil E, Cortés J, Iturriza I, et al. XPS and SEM analysis of the surface of gas atomized powder precursor of ODS ferritic steels obtained through the STARS route [J]. Appl. Surf. Sci., 2018, 427: 182
doi: 10.1016/j.apsusc.2017.07.205
17 Gil E, Ordás N, García-Rosales C, et al. ODS ferritic steels produced by an alternative route (STARS): microstructural characterisation after atomisation, HIPping and heat treatments [J]. Powder Metall., 2016, 59: 359
doi: 10.1080/00325899.2016.1254894
18 Su Y C. Study on podwer forging technology and its application [J]. Eng. Techol., 2010, 2: 35
苏寅初. 粉末锻造技术及其应用问题研究 [J]. 工程技术, 2018, 2: 35
19 Tang H S. Deveolpment and application of podwer forging abroad [J]. Forging Stam. Technol., 1985, (6): 57
唐华生. 国外粉末锻造的发展和应用 [J]. 锻压技术, 1985(6): 57
20 Jia M T, Zhang D L, Liang J M, et al. Porosity, microstructure, and mechanical properties of Ti-6Al-4V alloy parts fabricated by powder compact forging [J]. Metall. Mater. Trans., 2017, 48A: 2015
21 Wang Y K, Peng M G. The generalization of powder forging processand technology [J]. Met. Mater. Metall. Eng., 2007, 35(5): 57
王云坤, 彭茂公. 粉末锻造工艺技术的发展概况 [J]. 金属材料与冶金工程, 2007, 35(5): 57
22 Li Z X. Study on podwer forging technology of 12Cr2Ni4A and 18Cr2Ni4WA alloy [J]. Aviat. Maint. Eng., 1997, (2): 10
李宗霞. 合金钢12Cr2Ni4A和18Cr2Ni4WA粉末锻造工艺研究 [J]. 航空制造工程, 1997, (2): 10
23 Xia Y H, Xu Y X. Process adaptability and partsapplication of powder forging [J]. Forg. Metalform., 2016, (17): 40
夏玉海, 徐玉秀. 粉末锻造的工艺适应性与零件应用 [J]. 锻造与冲压, 2016, (17): 40
24 Liu Z Y, Wang X F. Study on properties of powder forging Ti-6Al-4V-1Nb alloy for machinery [J]. Hot Working Technol., 2019, 48(11): 124
刘志英, 王晓峰. 机械用粉末锻造Ti-6Al-4V-1Nb合金的性能研究 [J]. 热加工工艺, 2019, 48(11): 124
25 Mao Z G, Booth-Morrison C, Sudbrack C K, et al. Interfacial free energies, nucleation, and precipitate morphologies in Ni-Al-Cr alloys: calculations and atom-probe tomographic experiments [J]. Acta Mater., 2019, 166: 702
doi: 10.1016/j.actamat.2019.01.017
26 Nomura K, Ujihira Y. Analysis of oxide layers on stainless steel (304, and 316) by conversion electron Mössbauer spectrometry [J]. J. Mater. Sci., 1990, 25: 1745
doi: 10.1007/BF01045379
27 Miller R J, Gangulee A. Low‐temperature interdiffusion in titanium-permalloy thin‐film diffusion couples [J]. J. Vac. Sci. Technol., 1978, 15: 244
doi: 10.1116/1.569491
28 Liu Y, Fang J H, Liu D H, et al. Formation of oxides particles in ferritic steel by using gas-atomized powder [J]. J. Nucl. Mater., 2010, 396: 86
doi: 10.1016/j.jnucmat.2009.10.057
29 Liu T, Shen H, Wang C, et al. Microstructure and mechanical properties of Al containing ODS ferritic alloys by VHP and HIP [J]. Mater. Res. Innov., 2014, 18(): S4-410
30 Pazos D, Cintins A, De Castro V, et al. ODS ferritic steels obtained from gas atomized powders through the STARS processing route: Reactive synthesis as an alternative to mechanical alloying [J]. Nucl. Mater. Energy, 2018, 17: 1
31 Chen D Y, Murakami K, Chen L, et al. An investigation of nucleation sites for the formation of solute clusters in ferrite Fe [J]. Nucl. Instrum. Methods Phys. Res. Sect., 2020, 478B: 182
32 Fu C L, Krčmar M, Painter G S, et al. Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe [J]. Phys. Rev. Lett., 2007, 99: 225502
doi: 10.1103/PhysRevLett.99.225502
33 Hirata A, Fujita T, Wen Y R, et al. Atomic structure of nanoclusters in oxide-dispersion-strengthened steels [J]. Nat. Mater., 2011, 10: 922
doi: 10.1038/nmat3150 pmid: 22019943
34 Wu Y, Ciston J, Kräemer S, et al. The crystal structure, orientation relationships and interfaces of the nanoscale oxides in nanostructured ferritic alloys [J]. Acta Mater., 2016, 111: 108
doi: 10.1016/j.actamat.2016.03.031
35 Sakasegawa H, Chaffron L, Legendre F, et al. Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy [J]. J. Nucl. Mater., 2009, 384: 115
doi: 10.1016/j.jnucmat.2008.11.001
36 Klimiankou M, Lindau R, Möslang A. TEM characterization of structure and composition of nanosized ODS particles in reduced activation ferritic-martensitic steels [J]. J. Nucl. Mater., 2004, 329-333: 347
doi: 10.1016/j.jnucmat.2004.04.083
37 Dou P, Qiu L L, Jiang S M, et al. Crystal and metal/oxide interface structures of nanoparticles in Fe-16Cr-0.1Ti-0.35Y2O3 ODS steel [J]. J. Nucl. Mater., 2019, 523: 320
doi: 10.1016/j.jnucmat.2019.05.015
38 Francis J M, Jutson J A. High temperature oxidation of an Fe-Cr-Al-Y alloy in CO2 [J]. Corros. Sci., 1968, 8: 445.
doi: 10.1016/S0010-938X(68)90120-0
39 Shen J J, Li Y F, Li F, et al. Microstructural characterization and strengthening mechanisms of a 12Cr-ODS steel [J]. Mater. Sci. Eng., 2016, 673A: 624
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[10] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[11] ZHOU Zhangrui, LV Peisen, ZHAO Guoqi, ZHANG Jian, ZHAO Yunsong, LIU Lirong. Stress Rupture Deformation Mechanism of Two "Replacement of Re by W" Type Low-cost Second-generation Nickel Based Single Crystal Superalloys at Elevated Temperatures[J]. 材料研究学报, 2023, 37(5): 371-380.
[12] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[13] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[14] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
[15] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
No Suggested Reading articles found!