Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (11): 855-861    DOI: 10.11901/1005.3093.2021.467
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Mechanical Property of Polyurethane/Water Glass Grouting Materials during Curing Process
ZENG Zhipeng1,2, SONG Xiaoyan3, SUN Yong1, SONG Shuanglin1, LU Wei2(), HE Zhenglong2()
1.State Key Laboratory of Coal Mine Safety Technology, China Coal Technology &Engineering Group Shenyang Research Institute, Fushun 113122, China
2.College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
3.China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Cite this article: 

ZENG Zhipeng, SONG Xiaoyan, SUN Yong, SONG Shuanglin, LU Wei, HE Zhenglong. Microstructure and Mechanical Property of Polyurethane/Water Glass Grouting Materials during Curing Process. Chinese Journal of Materials Research, 2022, 36(11): 855-861.

Download:  HTML  PDF(6286KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and macroscopic mechanical property of polyurethane/sodium silicate grouting materials during curing process were studied by means of scanning electron microscopy, energy dispersive spectroscopy, transmission/diffuse reflectance infrared spectroscopy and mechanical testing. The results show that: within the first 7 days, the compressive strength, fracture toughness and bending strength of the polyurethane/sodium silicate grouting material increased rapidly up to 55.4 MPa, 1025.3 MPa·m1/2 and 29.4 MPa, afterwards, they slowly increased to 58 MPa, 1220.4 MPa·m1/2 and 37.4 MPa respectively; the macroscopic mechanical properties of grouting materials mainly depend on the degree of crosslinking-curing of organic phases; the curing process of the grouting material involves the continuous exchange of water, carbon dioxide and heat between the organic phase and sodium silicate, and finally forms the polyurethane/sodium silicate composite composed of polyurea/polyurethane, which was resulted from the reaction of polyisocyanate with water and polyether polyol and silicate particles cured by sodium silicate gel.

Key words:  composite      grouting materials      curing process      polyurethane      mechanical properties      microstructure     
Received:  16 August 2021     
ZTFLH:  TQ323.8  
Fund: National Basic Research Program of China(2018YFC0807900);National Natural Science Foundation of China(52004148);Natural Science Foundation of Shandong Province(ZR2020QE127);Open Project Funding of the State Key Laboratory of Coal Mine Safety Technology(2020-KF-23-05)
About author:  HE Zhenglong, Tel: (0554)6679917, E-mail: hzl_safety@sdust.edu.cn
LU Wei, Tel: (0554)6679917, E-mail: weilu@sdust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.467     OR     https://www.cjmr.org/EN/Y2022/V36/I11/855

Fig.1  Composition A and B of polyurethane-water glass grouting materials
Fig.2  Relationship between mechanical properties and curing time for polyurethane-water glass composites (a) changes in compressive strength during curing, (b) changes in fracture toughness during curing, and (c) changes in bending strength during curing
Fig.3  SEM images of the fracture surface of polyurethane-water glass composites (a) cure for 1 d, (b) cure for 7 d, (c) cure for 28 d
Fig.4  EDS results of spherical particles and needlelike crystals (a) spherical particles, (b) acicular crystals
Fig.5  FT-IR spectra of the polyurethane-water glass composites with different curing time
Fig.6  DRIFTS spectra of polyurethane-water glass composites after 28 d of curing
Fig.7  Curing process and mechanism of polyurethane-water glass composites
1 Hong B, Lu G Y, Gao J L, et al. Anti-ultraviolet aging performance of polyurethane binders used in roads [J]. China J. Highw. Transp., 2020, 33(10): 240
洪 斌, 陆国阳, 高峻凌 等. 路用聚氨酯胶结料的抗紫外老化性能 [J]. 中国公路学报, 2020, 33(10): 240
2 Xu S J, Wang S J, Zhong Y H, et al. Compression characteristics and constitutive model of low-exotherm Modified polyurethane grouting materials [J]. Adv. Civ. Eng., 2020, 1958473
3 Wen H, Geng R L, Sang C B. Effects of fiber on stress of mine-used inorganic foam filling material [J]. Safety in Coal Mines, 2016, 47(12): 23
文 虎, 耿瑞林, 桑长波. 纤维对矿用无机发泡充填材料应力的影响 [J]. 煤矿安全, 2016, 47(12): 23
4 Zhou Z B, Liu J H, Wu R D, et al. Analysis of bleeding of low concentration full tailings filling material and its regulate-control [J]. Chin. J. Mater. Res., 2020, 34(07): 481
周在波, 刘娟红, 吴瑞东 等. 低浓度全尾砂充填材料泌水及其调控机理 [J]. 材料研究学报, 2020, 34(07): 481
5 Lu Y. Study on the inorganic solidified foam and controlling spontaneous combustion of coal [D]. Xuzhou: China University of Mining and Technology, 2015
鲁 义. 防治煤炭自燃的无机固化泡沫及特性研究 [D]. 徐州: 中国矿业大学, 2015
6 Guan X M, Zhang H B, Yang Z P, et al. Research of high performance inorganic-organic composite grouting materials [J]. J. China Coal Soc., 2020, 45(3): 902
管学茂, 张海波, 杨政鹏 等. 高性能无机-有机复合注浆材料研究 [J]. 煤炭学报, 2020, 45(03): 902
7 Wang K, Pang H, Yang Y L. A study on polyurethane-sodium silicate composite grouting material used in coal mining [J]. Guangzhou Chem., 2014, 39(1): 30
王 坤, 庞 浩, 杨元龙. 煤矿用聚氨酯水玻璃复合灌浆材料的研究 [J]. 广州化学, 2014, 39(1): 30
8 Yang Z P, Zhang X F, Liu X, et al. Flexible and stretchable polyurethane/waterglass grouting material [J]. Constr. Build. Mater., 2017, 138: 240
doi: 10.1016/j.conbuildmat.2017.01.113
9 Han X F, Feng D R, Ai Y L, et al. Preparation of two-component waterproof polyurethane coating filled with fly ash [J]. Fine Spec. Chem., 2006, 14(10): 24
韩雪峰, 冯冬然, 艾艳玲 等. 粉煤灰填充双组分聚氨酯防水涂料的制备 [J]. 精细与专用化学品, 2006, 14(10): 24
10 Yang S B, Hong X D, Dong W, et al. Mechanism of self-controlling temperature for self-controlling temperature polyurethane grouting reinforced materials and its application properties [J]. J. China Coal Soc., 2014, 39(7): 1315
杨绍斌, 洪晓东, 董 伟 等. 自限温聚氨酯注浆加固材料的自限温机理及应用性能 [J]. 煤炭学报, 2014, 39(07): 1315
11 Zhang, Q, Hu X M., Wu M Y, et al. Effects of different catalysts on the structure and properties of polyurethane/water glass grouting materials [J]. J. Appl. Polym. Sci., 2018, 135(27), 46460
doi: 10.1002/app.46460
12 Xie C P, Rong C X, Wang C B, et al. Experimental study on reinforced coal by polyurethane/water glass double liquid grouting [J]. J. Anhui Univ. Sci. Technol., (Nat. Sci.), 2020, 40(01): 51
谢春鹏, 荣传新, 王传兵 等. 聚氨酯/水玻璃双液注浆加固煤体试验研究 [J]. 安徽理工大学学报(自然科学版), 2020, 40(01): 51
13 Yue X M, Gu Z Y, Xiao C C, et al. Research on properties of sodium silicate modified polyurethane as binder for gangue [J]. Int. J. Min. Sci. Technol., 2021, 50(03): 515
岳晓明, 顾子宜, 肖翠翠 等. 水玻璃改性聚氨酯用作矸石黏结剂的性能研究 [J]. 中国矿业大学学报, 2021, 50(03): 515
14 He Z L, Li Q F, Wang J W, et al. Effect of silane treatment on the mechanical properties of polyurethane/water glass grouting materials [J]. Constr. Build. Mater., 2016, 116: 110
doi: 10.1016/j.conbuildmat.2016.04.112
15 Zhao C Y, Yan Y, Hu Z H, et al. Preparation and characterization of granular silica aerogel/polyisocyanurate rigid foam composites [J]. Constr. Build. Mater., 2015, 93: 309
doi: 10.1016/j.conbuildmat.2015.05.129
16 Bil M, Mrówka P, Kolbuk D, et al. Multifunctional composite combining chitosan microspheres for drug delivery embedded in shape memory polyester-urethane matrix [J]. Compos. Sci. Technol., 2021, 201
17 Sun Y, Wang S G, Dong X S, et al. Optimized synthesis of isocyanate microcapsules for self-healing application in epoxy composites [J]. High Perform. Polym., 2020, 32: 669
doi: 10.1177/0954008319897745
18 Zhou X, Hu B, Xiao W Q, et al. Preparation and properties of composites of polyvinyl alcohol grafted graphene oxide/thermoplastic polyurethane [J]. Chin. J. Mater. Res., 2017, 31(11): 874
周 醒, 胡 斌, 肖文强 等. 氧化石墨烯接枝聚乙烯醇/热塑性聚氨酯复合材料的制备和性能 [J]. 材料研究学报, 2017, 31(11): 874
19 He Z L, Jiang S, Li Q F, et al. Facile and cost-effective synthesis of isocyanate microcapsules via polyvinyl alcohol-mediated interfacial polymerization and their application in self-healing materials [J]. Compos. Sci. Technol., 2017, 138: 15
doi: 10.1016/j.compscitech.2016.11.004
20 Xu J. Infrared spectroscopy analys is of modified sodium silicate [J]. Foundry, 2008, 57(8): 834
许 进. 改性水玻璃的红外光谱分析 [J]. 铸造, 2008, 57(8): 834
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[8] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[9] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[10] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[11] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[12] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[13] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[14] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[15] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
No Suggested Reading articles found!