|
|
|
| Preparation and Photocatalytic Property of Iron-doped Titanium Dioxide Nanomaterials |
JING Qian, CAO Han, LIU Fangyuan, XI Huijuan, LI Chaoxiang, SHAO Yunhang, CAO Meiwen, XIA Yongqing, WANG Shengjie( ) |
| College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China |
|
Cite this article:
JING Qian, CAO Han, LIU Fangyuan, XI Huijuan, LI Chaoxiang, SHAO Yunhang, CAO Meiwen, XIA Yongqing, WANG Shengjie. Preparation and Photocatalytic Property of Iron-doped Titanium Dioxide Nanomaterials. Chinese Journal of Materials Research, 2022, 36(11): 862-870.
|
|
|
Abstract Iron-doped titanium dioxide (Fe-TiO2) nanomaterials were prepared with the stable fibrous nanostructure of self-assembled bola-type amphiphilic short peptide KI3E as organic templateand aminopropyl triethoxysilane as structure-directing agent via sol-gel process to ensure the simultaneous deposition of the titanium dioxide precursor and iron ions on the surface of the peptide templates. The Fe doped-TiO2 nanomaterials were fully characterized by Transmission electron microscope, UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometer. The results show that iron ions instead of partial titanium ions in the crystal lattice of titanium dioxide, which narrows the band gap of TiO2 and results in enhanced visible light responses. The test results of photocatalytic degradation of rhodamine B and methylene blue indicated that the Fe doped-TiO2 possessed significantly enhanced photocatalytic performance, compared to the commercial TiO2 (P25), while reached a maximum when the doping content of iron ions was 0.5%.
|
|
Received: 08 July 2021
|
|
|
| Fund: National Natural Science Foundation of China(21773310);Key Research and Development Program of Shandong Province(2019GGX103047);the Natural Science Foundation of Shandong Province(ZR2020MB076) |
About author: WANG Shengjie, Tel: 15964928749, E-mail: sjwang@upc.edu.cn
|
| 1 |
Hu J D, Xie J, Jia W, et al. Interesting molecule adsorption strategy induced energy band tuning: Boosts 43 times photocatalytic Water splitting ability for commercial TiO2 [J]. Appl. Catal., 2020, 268B: 118753
|
| 2 |
Liu J Y, Gong X Q, Li R X, et al. (Photo)Electrocatalytic CO2 reduction at the defective anatase TiO2 (101) surface [J]. ACS Catal., 2020, 10: 4048
doi: 10.1021/acscatal.0c00947
|
| 3 |
Xu L Y, Xiu Y, Liu F Y, et al. Research progress in conversion of CO2 to valuable fuels [J]. Molecules, 2020, 25: 3653
doi: 10.3390/molecules25163653
|
| 4 |
Zhu L F, Shi J J, Li D M, et al. Effect of mesoporous TiO2 layer thickness on the cell performance of perovskite solar cells [J]. Acta Chim. Sin., 2015, 73: 261
|
|
朱立峰, 石将建, 李冬梅 等. 多孔TiO2层厚度对钙钛矿太阳能电池性能的影响 [J]. 化学学报, 2015, 73: 261
doi: 10.6023/A14110823
|
| 5 |
Xie F Y, Li Y F, Dou J, et al. Facile synthesis of SnO2 coated urchin-like TiO2 hollow microspheres as efficient scattering layer for dye-sensitized solar cells [J]. J. Power Sources, 2016, 336: 143
doi: 10.1016/j.jpowsour.2016.10.061
|
| 6 |
Thapa A, Zai J T, Elbohy H, et al. TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells [J]. Nano Res., 2014, 7: 1154
doi: 10.1007/s12274-014-0478-z
|
| 7 |
Yun J Y N, Hwang S H, Jang J. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells [J]. ACS Appl. Mater. Interfaces, 2015, 7: 2055
doi: 10.1021/am508065n
|
| 8 |
Chen Y F, Huang W X, He D L, et al. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation [J]. ACS Appl. Mater. Interfaces, 2014, 6: 14405
doi: 10.1021/am503674e
|
| 9 |
Mao C Y, Zuo F, Hou Y, et al. In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction [J]. Angew. Chem. Int. Ed., 2014, 53: 10485
doi: 10.1002/anie.201406017
|
| 10 |
Liu F Y, Xu L Y, Xiu Y, et al. Non-metallic element doped titanium dioxide [J]. Chemistry, 2021, 84: 108
|
|
刘方园, 徐鲁艺, 修 阳 等. 非金属元素掺杂纳米二氧化钛 [J]. 化学通报, 2021, 84: 108
|
| 11 |
Sotelo-Vazquez C, Noor N, Kafizas A, et al. Multifunctional P-Doped TiO2 films: a new approach to self-cleaning, transparent conducting oxide materials [J]. Chem. Mater., 2015, 27: 3234
doi: 10.1021/cm504734a
|
| 12 |
Chakhari W, Ben Naceur J, Taieb S, et al. Fe-doped TiO2 nanorods with enhanced electrochemical properties as efficient photoanode materials [J]. J. Alloys Compd., 2016, 708: 862
doi: 10.1016/j.jallcom.2016.12.181
|
| 13 |
Sumerel J L, Yang W J, Kisailus D, et al. Biocatalytically templated synthesis of titanium dioxide [J]. Chem. Mater., 2003, 15: 4804
doi: 10.1021/cm030254u
|
| 14 |
Li Q, Zhang J X, Wang Y F, et al. Chem. Eur. J., 2018, 24: 18123
doi: 10.1002/chem.201804514
|
| 15 |
Nonoyama T, Kinoshita T, Higuchi M, et al. TiO2 synthesis inspired by biomineralization: control of morphology, crystal phase, and light-use efficiency in a single process [J]. J. Am. Chem. Soc., 2012, 134: 8841
doi: 10.1021/ja211347n
|
| 16 |
Wang S J, Cui B S, Cai Q W, et al. Fabrication of highly luminescent SiO2-Au nanostructures and their application in detection of trace Hg2+ [J]. J. Mater. Sci., 2019, 54: 7517
|
| 17 |
Xiu Y, Zhang X, Feng Y F, et al. Peptide-mediated porphyrin based hierarchical complexes for light-to-chemical conversion [J]. Nanoscale, 2020, 12: 15201
doi: 10.1039/d0nr03124k
pmid: 32638799
|
| 18 |
Xiu Y, Zhang D X, Xu L Y, et al. Bioinspired construction of light-harvesting antenna via hierarchically co-assembling approach [J]. J. Colloid Interface Sci., 2021, 587: 550
doi: 10.1016/j.jcis.2020.11.012
|
| 19 |
Wang S J, Xue J Y, Ge X, et al. Biomimetic synthesis of silica nanostructures with controllable morphologies and sizes through tuning interfacial interactions [J]. Chem. Commun., 2012, 48: 9415
doi: 10.1039/c2cc34667b
|
| 20 |
Wang S J, Ge X, Xue J Y, et al. Mechanistic processes underlying biomimetic synthesis of silica nanotubes from self-assembled ultrashort peptide templates [J]. Chem. Mater., 2011, 23: 2466
doi: 10.1021/cm2003885
|
| 21 |
Xiu Y, Xu L Y, Zhang X, et al. Mechanistic process understanding of the biomimetic construction of porphyrin-based light-capturing antennas from self-assembled Fmoc-blocked peptide templates [J]. ACS Sustainable Chem. Eng., 2020, 8: 15761
doi: 10.1021/acssuschemeng.0c06191
|
| 22 |
Xie M X, Liu Y. Studies on amide Ⅲ infrared bands for the secondary structure determination of proteins [J]. Chem. Res. Chin. Univ., 2003, 24: 226
doi: 10.1016/S1005-9040(08)60047-1
|
|
谢孟峡, 刘 媛. 红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究 [J]. 高等学校化学学报, 2003, 24: 226
|
| 23 |
Hegde M S, Nagaveni K, Roy S. Synthesis, structure and photocatalytic activity of nano TiO2 and nano Ti1- xMx O2- δ (M=Cu, Fe, Pt, Pd, V, W, Ce, Zr) [J]. Pramana, 2005, 65: 641
doi: 10.1007/BF03010452
|
| 24 |
Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem., 98: 13669
|
| 25 |
Zielińska B, Grzechulska J, Grzmil B, et al. Photocatalytic degradation of reactive black 5: A comparison between TiO2-tytanpol A11 and TiO2-degussa P25 photocatalysts [J]. Appl. Catal., 2001, 35B: L1
|
| 26 |
Apopei P, Catrinescu C, Teodosiu C, et al. Mixed-phase TiO2 photocatalysts: Crystalline phase isolation and reconstruction, characterization and photocatalytic activity in the oxidation of 4-chlorophenol from aqueous effluents [J]. Appl. Catal., 2014, 160-161B: 374
|
| 27 |
Wu Y Z, Ward-Bond J, Li D L, et al. g-C3N4@α-Fe2O3/C photocatalysts: synergistically intensified charge generation and charge transfer for NADH regeneration [J]. ACS. Catal., 2018, 8: 5664
doi: 10.1021/acscatal.8b00070
|
| 28 |
Tang S Q, He J P, Zhang Z. Synthesis and photocatalytic activity of Fe-doped mesoporous TiO2 powder [J]. J. Chin. Ceram. Soc., 2012, 40: 951
|
|
唐守强, 何菁萍, 张 昭. 铁掺杂介孔二氧化钛的制备及其光催化性能 [J]. 硅酸盐学报, 2012, 40: 951
|
| 29 |
Zou M M, Xiong F Q, Ganeshraja A S, et al. Visible light photocatalysts (Fe, N):TiO2 from ammonothermally processed, solvothermal self-assembly derived Fe-TiO2 mesoporous microspheres. [J]. Mater. Chem. Phys., 2017, 195: 259
doi: 10.1016/j.matchemphys.2017.04.035
|
| 30 |
Abazović N D, Mirenghi L, Janković I A, et al. Synthesis and characterization of rutile TiO2 nanopowders doped with iron ions [J]. Nanoscale Res. Lett., 2009, 4: 518
doi: 10.1007/s11671-009-9274-1
pmid: 20596442
|
| 31 |
He C, Yu Y, Hu X F, et al. Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder [J]. J. Eur. Ceram. Soc., 2003, 23: 1457
doi: 10.1016/S0955-2219(02)00356-4
|
| 32 |
Ren W J, Ai Z H, Jia F L, et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 [J]. Appl. Catal., 2007, 69B: 138
|
| 33 |
Zhang Y S, Kirk C, Robertson N. Nitrogen doping and carbon coating affects substrate selectivity of TiO2 photocatalytic organic pollutant degradation [J]. Chem. Phys. Chem., 2020, 21: 2643
|
| 34 |
Xu G, Zhang Y, Peng D D, et al. Nitrogen-doped mixed-phase TiO2 with controllable phase junction as superior visible-light photocatalyst for selective oxidation of cyclohexane [J]. Appl. Surf. Sci., 2021, 536: 147953
doi: 10.1016/j.apsusc.2020.147953
|
| 35 |
Wang R, Shi M S, Xu F Y, et al. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection [J]. Nat. Commun., 2020, 11: 4465
doi: 10.1038/s41467-020-18267-1
pmid: 32901012
|
| 36 |
Ökte A N, Akalın Ş. Iron (Fe3+) loaded TiO2 nanocatalysts: characterization and photoreactivity [J]. React. Kinet. Mech. Catal., 2010, 100: 55
|
| 37 |
Cheng X W, Yu X J, Xing Z P, et al. Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity [J]. Arab. J. Chem., 2016, 9(): S1706
doi: 10.1016/j.arabjc.2012.04.052
|
| 38 |
Niu J F, Han G C, Dai P X, et al. Preparation and photocatalytic activity of schiff base cobalt porphyrin-TiO2 composites [J]. Chin. J. Mater. Res., 2016, 30: 947
|
|
钮金芬, 韩广超, 戴佩璇 等. 席夫碱钴卟啉-TiO2复合光催化剂的制备及其光催化性能研究 [J]. 材料研究学报, 2016, 30: 947
doi: 10.11901/1005.3093.2016.174
|
| 39 |
Barkhade T, Banerjee I. Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites [J]. AIP Conf. Proc., 2018, 1961: 030016
|
| 40 |
Zolfaghari A, Riazian M, Ashjari M. Preparation and photodeposition of Fe-S/TiO2@PEG nanoparticles for methylene blue and Evans blue [J]. Res. Chem. Intermed., 2021, 47: 1809
doi: 10.1007/s11164-021-04396-9
|
| 41 |
Xu J S, Zhang T, Zhang J. Photocatalytic degradation of methylene blue with spent FCC catalyst loaded with ferric oxide and titanium dioxide [J]. Sci. Rep., 2020, 10: 12730
doi: 10.1038/s41598-020-69643-2
pmid: 32728146
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|