Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (11): 862-870    DOI: 10.11901/1005.3093.2021.397
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Photocatalytic Property of Iron-doped Titanium Dioxide Nanomaterials
JING Qian, CAO Han, LIU Fangyuan, XI Huijuan, LI Chaoxiang, SHAO Yunhang, CAO Meiwen, XIA Yongqing, WANG Shengjie()
College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
Cite this article: 

JING Qian, CAO Han, LIU Fangyuan, XI Huijuan, LI Chaoxiang, SHAO Yunhang, CAO Meiwen, XIA Yongqing, WANG Shengjie. Preparation and Photocatalytic Property of Iron-doped Titanium Dioxide Nanomaterials. Chinese Journal of Materials Research, 2022, 36(11): 862-870.

Download:  HTML  PDF(3706KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Iron-doped titanium dioxide (Fe-TiO2) nanomaterials were prepared with the stable fibrous nanostructure of self-assembled bola-type amphiphilic short peptide KI3E as organic templateand aminopropyl triethoxysilane as structure-directing agent via sol-gel process to ensure the simultaneous deposition of the titanium dioxide precursor and iron ions on the surface of the peptide templates. The Fe doped-TiO2 nanomaterials were fully characterized by Transmission electron microscope, UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometer. The results show that iron ions instead of partial titanium ions in the crystal lattice of titanium dioxide, which narrows the band gap of TiO2 and results in enhanced visible light responses. The test results of photocatalytic degradation of rhodamine B and methylene blue indicated that the Fe doped-TiO2 possessed significantly enhanced photocatalytic performance, compared to the commercial TiO2 (P25), while reached a maximum when the doping content of iron ions was 0.5%.

Key words:  inorganic non-metallic materials      titanium dioxide      iron-doping      bola amphiphilic short-peptide      photocatalysis     
Received:  08 July 2021     
ZTFLH:  O643  
Fund: National Natural Science Foundation of China(21773310);Key Research and Development Program of Shandong Province(2019GGX103047);the Natural Science Foundation of Shandong Province(ZR2020MB076)
About author:  WANG Shengjie, Tel: 15964928749, E-mail: sjwang@upc.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.397     OR     https://www.cjmr.org/EN/Y2022/V36/I11/862

Fig.1  Molecular structure of KI3E blocked with amino in C terminal and acetyl in N terminal (a), CD spectra (b), FTIR spectra (c), TEM image (d), diameter statistic of the self-assembly of KI3E obtained from the TEM image (e) and AFM height image of KI3E at aqueous solution (pH 10) with a concentration of 4 mmol/L (f)
Fig.2  Schematic showing the preparation process of iron-doped TiO2 nanostructures (a), TEM images of FT-0 (b) and FT-0.5 (c) before calcination and TEM image of FT-0.5 after calcination for 3 h at 400℃ (d)
SampleFe:Ti/%, mass fractionContent/%

BET surface area

/m2·g-1

Pore volume

/cm3·g-1

Average pore size

/nm

Fe2+Fe3+
FT-0.250.25100053.250.326.3
FT-0.50.34100061.590.266.7
FT-10.89100064.490.305.4
FT-21.82604073.540.263.8
FT-54.72554578.920.244.6
FT-109.51455586.210.192.8
FT-1511.49406095.310.173.4
Table 1  Atomic percentage of Fe, content of Fe2+ and Fe3+, surface area, pore volume and pore size of samples prepared from different content of FeCl3 dopants
Fig.3  Plot of (αhν)1/2 function versus the band gap energy of various pure and iron doped samples. For comparison, commercial titanium dioxide P25 was also provided
Fig.4  XPS survey spectra (a) and the narrow XPS spectra of Fe 2p (b), O 1s (c) and Ti 2p (d) of FT-0, FT-0.5 and FT-15
Fig.5  XRD patterns of iron-doped TiO2 nanostructures prepared from different iron concentrations and standard XRD patterns of Fe2O3 and anatase TiO2
SampleLattice constantGrain size /nm
a/nmc/nm
FT-00.3780.9458.7
FT-0.250.3770.9247.1
FT-0.50.3770.9066.7
FT-10.3780.9326.5
FT-20.3780.9266.2
FT-50.3780.8975.9
FT-100.3760.8865.6
FT-150.3760.8925.3
Table 2  Crystallographic data of iron-doped TiO2 nanostructures with different iron ions concentration
Fig.6  (a) Proposed mechanism for the degradation of organic molecules under visible light irradiation; Photodegradation of organic molecules RhB (b) and MB (c) by iron-doped TiO2 powders prepared with different levels of iron incorporation and P25 under visible light and cycling test for the degradation of RhB in the presence of FT-0.5 (d)
MaterialsModel PollutantLight sourcePhotocatalytic degradation measure
Fe-TiO2(this work)

RhB

Mb

300 W Xe lamp(>400 nm)90% degradation after 3 h
N-TiO2[37]RhB350 W Xe lamp (≥420 nm)90.3% degradation after 2 h
XFJ-Co-TPP-TiO2[38]RhB150 W Xe lamp90% degradation after 1 h
MB90% degradation after 2 h
Fe-TiO2[39]RhB240 W tungsten bulb70% degradation after 1.5 h
Fe-S/TiO2[40]MB40 W LED lamp90% degradation after 2 h
Fe-Ti/SF[41]MB300 W Xe lamp94.2% degradation after 2 h
Table 3  Comparison of recent research results on degradation model of pollutants by TiO2 photocatalyst
1 Hu J D, Xie J, Jia W, et al. Interesting molecule adsorption strategy induced energy band tuning: Boosts 43 times photocatalytic Water splitting ability for commercial TiO2 [J]. Appl. Catal., 2020, 268B: 118753
2 Liu J Y, Gong X Q, Li R X, et al. (Photo)Electrocatalytic CO2 reduction at the defective anatase TiO2 (101) surface [J]. ACS Catal., 2020, 10: 4048
doi: 10.1021/acscatal.0c00947
3 Xu L Y, Xiu Y, Liu F Y, et al. Research progress in conversion of CO2 to valuable fuels [J]. Molecules, 2020, 25: 3653
doi: 10.3390/molecules25163653
4 Zhu L F, Shi J J, Li D M, et al. Effect of mesoporous TiO2 layer thickness on the cell performance of perovskite solar cells [J]. Acta Chim. Sin., 2015, 73: 261
朱立峰, 石将建, 李冬梅 等. 多孔TiO2层厚度对钙钛矿太阳能电池性能的影响 [J]. 化学学报, 2015, 73: 261
doi: 10.6023/A14110823
5 Xie F Y, Li Y F, Dou J, et al. Facile synthesis of SnO2 coated urchin-like TiO2 hollow microspheres as efficient scattering layer for dye-sensitized solar cells [J]. J. Power Sources, 2016, 336: 143
doi: 10.1016/j.jpowsour.2016.10.061
6 Thapa A, Zai J T, Elbohy H, et al. TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells [J]. Nano Res., 2014, 7: 1154
doi: 10.1007/s12274-014-0478-z
7 Yun J Y N, Hwang S H, Jang J. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells [J]. ACS Appl. Mater. Interfaces, 2015, 7: 2055
doi: 10.1021/am508065n
8 Chen Y F, Huang W X, He D L, et al. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation [J]. ACS Appl. Mater. Interfaces, 2014, 6: 14405
doi: 10.1021/am503674e
9 Mao C Y, Zuo F, Hou Y, et al. In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction [J]. Angew. Chem. Int. Ed., 2014, 53: 10485
doi: 10.1002/anie.201406017
10 Liu F Y, Xu L Y, Xiu Y, et al. Non-metallic element doped titanium dioxide [J]. Chemistry, 2021, 84: 108
刘方园, 徐鲁艺, 修 阳 等. 非金属元素掺杂纳米二氧化钛 [J]. 化学通报, 2021, 84: 108
11 Sotelo-Vazquez C, Noor N, Kafizas A, et al. Multifunctional P-Doped TiO2 films: a new approach to self-cleaning, transparent conducting oxide materials [J]. Chem. Mater., 2015, 27: 3234
doi: 10.1021/cm504734a
12 Chakhari W, Ben Naceur J, Taieb S, et al. Fe-doped TiO2 nanorods with enhanced electrochemical properties as efficient photoanode materials [J]. J. Alloys Compd., 2016, 708: 862
doi: 10.1016/j.jallcom.2016.12.181
13 Sumerel J L, Yang W J, Kisailus D, et al. Biocatalytically templated synthesis of titanium dioxide [J]. Chem. Mater., 2003, 15: 4804
doi: 10.1021/cm030254u
14 Li Q, Zhang J X, Wang Y F, et al. Chem. Eur. J., 2018, 24: 18123
doi: 10.1002/chem.201804514
15 Nonoyama T, Kinoshita T, Higuchi M, et al. TiO2 synthesis inspired by biomineralization: control of morphology, crystal phase, and light-use efficiency in a single process [J]. J. Am. Chem. Soc., 2012, 134: 8841
doi: 10.1021/ja211347n
16 Wang S J, Cui B S, Cai Q W, et al. Fabrication of highly luminescent SiO2-Au nanostructures and their application in detection of trace Hg2+ [J]. J. Mater. Sci., 2019, 54: 7517
17 Xiu Y, Zhang X, Feng Y F, et al. Peptide-mediated porphyrin based hierarchical complexes for light-to-chemical conversion [J]. Nanoscale, 2020, 12: 15201
doi: 10.1039/d0nr03124k pmid: 32638799
18 Xiu Y, Zhang D X, Xu L Y, et al. Bioinspired construction of light-harvesting antenna via hierarchically co-assembling approach [J]. J. Colloid Interface Sci., 2021, 587: 550
doi: 10.1016/j.jcis.2020.11.012
19 Wang S J, Xue J Y, Ge X, et al. Biomimetic synthesis of silica nanostructures with controllable morphologies and sizes through tuning interfacial interactions [J]. Chem. Commun., 2012, 48: 9415
doi: 10.1039/c2cc34667b
20 Wang S J, Ge X, Xue J Y, et al. Mechanistic processes underlying biomimetic synthesis of silica nanotubes from self-assembled ultrashort peptide templates [J]. Chem. Mater., 2011, 23: 2466
doi: 10.1021/cm2003885
21 Xiu Y, Xu L Y, Zhang X, et al. Mechanistic process understanding of the biomimetic construction of porphyrin-based light-capturing antennas from self-assembled Fmoc-blocked peptide templates [J]. ACS Sustainable Chem. Eng., 2020, 8: 15761
doi: 10.1021/acssuschemeng.0c06191
22 Xie M X, Liu Y. Studies on amide Ⅲ infrared bands for the secondary structure determination of proteins [J]. Chem. Res. Chin. Univ., 2003, 24: 226
doi: 10.1016/S1005-9040(08)60047-1
谢孟峡, 刘 媛. 红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究 [J]. 高等学校化学学报, 2003, 24: 226
23 Hegde M S, Nagaveni K, Roy S. Synthesis, structure and photocatalytic activity of nano TiO2 and nano Ti1- xMx O2- δ (M=Cu, Fe, Pt, Pd, V, W, Ce, Zr) [J]. Pramana, 2005, 65: 641
doi: 10.1007/BF03010452
24 Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem., 98: 13669
25 Zielińska B, Grzechulska J, Grzmil B, et al. Photocatalytic degradation of reactive black 5: A comparison between TiO2-tytanpol A11 and TiO2-degussa P25 photocatalysts [J]. Appl. Catal., 2001, 35B: L1
26 Apopei P, Catrinescu C, Teodosiu C, et al. Mixed-phase TiO2 photocatalysts: Crystalline phase isolation and reconstruction, characterization and photocatalytic activity in the oxidation of 4-chlorophenol from aqueous effluents [J]. Appl. Catal., 2014, 160-161B: 374
27 Wu Y Z, Ward-Bond J, Li D L, et al. g-C3N4@α-Fe2O3/C photocatalysts: synergistically intensified charge generation and charge transfer for NADH regeneration [J]. ACS. Catal., 2018, 8: 5664
doi: 10.1021/acscatal.8b00070
28 Tang S Q, He J P, Zhang Z. Synthesis and photocatalytic activity of Fe-doped mesoporous TiO2 powder [J]. J. Chin. Ceram. Soc., 2012, 40: 951
唐守强, 何菁萍, 张 昭. 铁掺杂介孔二氧化钛的制备及其光催化性能 [J]. 硅酸盐学报, 2012, 40: 951
29 Zou M M, Xiong F Q, Ganeshraja A S, et al. Visible light photocatalysts (Fe, N):TiO2 from ammonothermally processed, solvothermal self-assembly derived Fe-TiO2 mesoporous microspheres. [J]. Mater. Chem. Phys., 2017, 195: 259
doi: 10.1016/j.matchemphys.2017.04.035
30 Abazović N D, Mirenghi L, Janković I A, et al. Synthesis and characterization of rutile TiO2 nanopowders doped with iron ions [J]. Nanoscale Res. Lett., 2009, 4: 518
doi: 10.1007/s11671-009-9274-1 pmid: 20596442
31 He C, Yu Y, Hu X F, et al. Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder [J]. J. Eur. Ceram. Soc., 2003, 23: 1457
doi: 10.1016/S0955-2219(02)00356-4
32 Ren W J, Ai Z H, Jia F L, et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 [J]. Appl. Catal., 2007, 69B: 138
33 Zhang Y S, Kirk C, Robertson N. Nitrogen doping and carbon coating affects substrate selectivity of TiO2 photocatalytic organic pollutant degradation [J]. Chem. Phys. Chem., 2020, 21: 2643
34 Xu G, Zhang Y, Peng D D, et al. Nitrogen-doped mixed-phase TiO2 with controllable phase junction as superior visible-light photocatalyst for selective oxidation of cyclohexane [J]. Appl. Surf. Sci., 2021, 536: 147953
doi: 10.1016/j.apsusc.2020.147953
35 Wang R, Shi M S, Xu F Y, et al. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection [J]. Nat. Commun., 2020, 11: 4465
doi: 10.1038/s41467-020-18267-1 pmid: 32901012
36 Ökte A N, Akalın Ş. Iron (Fe3+) loaded TiO2 nanocatalysts: characterization and photoreactivity [J]. React. Kinet. Mech. Catal., 2010, 100: 55
37 Cheng X W, Yu X J, Xing Z P, et al. Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity [J]. Arab. J. Chem., 2016, 9(): S1706
doi: 10.1016/j.arabjc.2012.04.052
38 Niu J F, Han G C, Dai P X, et al. Preparation and photocatalytic activity of schiff base cobalt porphyrin-TiO2 composites [J]. Chin. J. Mater. Res., 2016, 30: 947
钮金芬, 韩广超, 戴佩璇 等. 席夫碱钴卟啉-TiO2复合光催化剂的制备及其光催化性能研究 [J]. 材料研究学报, 2016, 30: 947
doi: 10.11901/1005.3093.2016.174
39 Barkhade T, Banerjee I. Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites [J]. AIP Conf. Proc., 2018, 1961: 030016
40 Zolfaghari A, Riazian M, Ashjari M. Preparation and photodeposition of Fe-S/TiO2@PEG nanoparticles for methylene blue and Evans blue [J]. Res. Chem. Intermed., 2021, 47: 1809
doi: 10.1007/s11164-021-04396-9
41 Xu J S, Zhang T, Zhang J. Photocatalytic degradation of methylene blue with spent FCC catalyst loaded with ferric oxide and titanium dioxide [J]. Sci. Rep., 2020, 10: 12730
doi: 10.1038/s41598-020-69643-2 pmid: 32728146
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
No Suggested Reading articles found!