Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (11): 850-854    DOI: 10.11901/1005.3093.2021.622
ARTICLES Current Issue | Archive | Adv Search |
Effect of Helium Ions Irradiation on Stability of Nano-tungsten Whiskers
HU Ruihang, YANG Zhen, LEI Qijun, LI Xinyang, DONG Ziyu, ZHANG Xiaotong, FAN Hongyu(), NIU Jinhai()
Liaoning Key Laboratory of Plasma Technology, Dalian Minzu University, Dalian 116600, China
Cite this article: 

HU Ruihang, YANG Zhen, LEI Qijun, LI Xinyang, DONG Ziyu, ZHANG Xiaotong, FAN Hongyu, NIU Jinhai. Effect of Helium Ions Irradiation on Stability of Nano-tungsten Whiskers. Chinese Journal of Materials Research, 2022, 36(11): 850-854.

Download:  HTML  PDF(4235KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanoscale tungsten whiskers grown on the surface of polycrystalline W-plate was subjected intermittently to irradiation of He ions with energy of 150 eV at 400 K. The effect of He ion irradiation on the evolution of nanoscale W-whiskers were investigated by means of scanning electron microscope, transmission electron microscope and mass loss method. The results show that nanoscale W-whiskers were extremely unstable in the course of high-energy He ion irradiation, and the degree of crosslinking between W-whiskers decreases gradually with the increase of irradiation fluence. Due to high-energy He ion sputtering, He bubbles existed in the whiskers will break and lead to collapse and coalesce of the W-whiskers. Meanwhile, certain amount of the yielded W atoms by He ion sputtering may re-deposited on the outer wall or the root of the nanoscale whiskers nearby, and finally, the relevant nanoscale whiskers may evolve into a cone-shaped structure with a thin top and a thick root.

Key words:  metallography      tungsten      He ions irradiation      sputtering     
Received:  04 November 2021     
ZTFLH:  TG14  
Fund: National Natural Science Foundation of China(11405023);Natural Science Foundation of Liaoning Province(20180510006);College Students Innovation Training Project of Liaoning Province(202112026040);“Taiyangniao” Student Research Project of Dalian Minzu University(tyn2021150)
About author:  NIU Jinhai, Tel: (0411)87924857, E-mail: niujh@ dlnu.edu.cn
FAN Hongyu, Tel: (0411)87924857, E-mail: fanhy@dlnu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.622     OR     https://www.cjmr.org/EN/Y2022/V36/I11/850

Fig.1  SEM analysis of the surface morphology of W fuzz irradiated by intermittent He ion with different fluence, magnification is 40 K (a) 0/m2, (b) 3.0×1023 /m2, (c) 1.2×1024 /m2, (d) 2.4×1024 /m2, (e) 3.6×1024 /m2, (f) 5.5×1024 /m2, (g) 7.5×1024 /m2, (h) 1.0×1025 /m2
Fig.2  High resolution SEM analysis of the surface morphology of W fuzz irradiated by intermittent He ion with different fluence, magnification is 150 K (a) 0/m2, (b) 3.0×1023 /m2, (c) 1.2×1024 /m2, (d) 2.4×1024 /m2, (e) 3.6×1024 /m2, (f) 5.5×1024 /m2, (g) 7.5×1024 /m2, (h) 1.0×1025 /m2
Fig.3  SEM analysis of the effect of intermittent He ion irradiation with different fluence on the cross-section morphology of W fuzz (a~d)and the curve of W fuzz layer thickness versus He+ fluence (e) (a) 0/m2, (b) 2.4×1024 /m2, (c) 5.5×1024 /m2, (d) 1.0×1025 /m2
Fig.4  Mass loss of W fuzz and sputtering yields of W sample as a function of H ion energy
Fig.5  TEM analysis the surface topography of W fuzz at different He ion fluence (a) 0/m2, (b) 1.2×1024 /m2, (c) 2.4×1024 /m2, (d) 3.6×1024 /m2, (e) 5.5×1024 /m2, (f) 1.0×1025 /m2
1 Takamura S, Ohno N, Nishijima D, et al. Formation of nanostructured tungsten with arborescent shape due to helium plasma irradiation [J]. Plasma Fusion Res., 2006, 1: 051
2 Meyer F W. He-ion induced surface morphology change and nanofuzz growth on hot tungsten surfaces [J]. J. Phys. B: At. Mol. Opt. Phys., 2019, 52: 012001
3 Hao Z L, Fan H Y, Guo J Y, et al. He Plasma Assisted Preparation of Nanostructure Tungsten Materials [J]. Chinese Journal of Materials Research, 2017, 31(6): 415
doi: 10.11901/1005.3093.2015.775
郝志玲, 范红玉, 郭佳玉 等. He等离子体辅助的纳米钨结构材料的制备 [J]. 材料研究学报, 2017, 31(6): 415
doi: 10.11901/1005.3093.2015.775
4 Rapp J. The challenges of plasma material interations in nuclear fusion Devices and potential solutions [J]. Fusion Sci. Technol., 2017, 72: 211
5 Kajita S, Sakaguchi W, Ohno N, et al. Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions [J]. Nucl. Fusion, 2009, 49: 095005
6 Kajita S, Yoshida N, Yoshihara R, et al. TEM observation of the growth process of helium nanobubbles on tungsten: nanostructure formation mechanism [J]. J. Nucl. Mater., 2011, 418: 152
doi: 10.1016/j.jnucmat.2011.06.026
7 Wright G, Brunner D, baldwin M, et al. Comparison of tungsten nano-tendrils grown in alcator c-mod and linear plasma devices [J]. J. Nucl. Mater., 2013, 438: S84
doi: 10.1016/j.jnucmat.2013.01.013
8 Ni W, Zhang Y, Cui Y, et al. The effect of fusion-relevant He ion flux on the evolution of He nano-bubbles in W [J]. Plasma Phys. Control. Fusion, 2020, 62: 065002
9 Bi Z, Liu D, Zhang Y, et al. The evolution of He nanobubbles in tungsten under fusion-relevant He ion irradition conditions [J]. Nucl. Fusion, 2019, 59: 086025
10 Sandoval L, Perez D, Uberuaga B P, et al. Competing kinetics and He bubble morphology in W [J]. Phys. Rev. Lett., 2015, 114: 105502
doi: 10.1103/PhysRevLett.114.105502
11 Martynenko Y V, Nagel M Y. Model of fuzz formation on a tungsten surface [J]. Plasma Phys. Rep., 2012, 39: 996
12 Patino M I, Nishijima D, Tokitani M, et al. Material mixing during fuzz formation in W and Mo [J], Phys. Scr., 2020, T171: 014070
13 Ni W, Niu C, Zhang Y, et al. Modeling W fuzz growth over polycrystalline W due to He ion irradiations at an elevated temperature [J]. J. Nucl. Mater., 2021, 550: 152917
doi: 10.1016/j.jnucmat.2021.152917
14 Yang Q, You Y W, Liu L, et al. Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation [J]. Sci. Rep., 2015, 5: 10959
doi: 10.1038/srep10959 pmid: 26077598
15 Li M, Fan H Y, Cui H J, et al. Low-energy helium-ions irradiation induced morphology and crystalline evolution of tungsten [J]. Nuclear Techniques, 2017, 40(10): 100201
李 萌, 范红玉, 崔荷敬 等. 低能氦离子辐照诱导的钨材料结构演化 [J]. 核技术, 2017, 40(10): 100201
[1] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[2] WANG Wei, PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC[J]. 材料研究学报, 2023, 37(6): 432-442.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[5] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[6] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[7] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[8] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[9] SUN Maolin, GONG Zhen, WANG Shiwen, YIN Hang, LI Ruiwu, ZHANG Zheng, LI Yutong, WU Fayu. Optical and Electrical Properties of Oxygen-controlled In2O3 Film[J]. 材料研究学报, 2021, 35(5): 394-400.
[10] ZHANG Zeling, WANG Shiqi, XU Bangli, ZHAO Yuhao, ZHANG Xuhai, FANG Feng. Electrocatalytic Oxygen Evolution Performance of High Entropy FeCoNiMoCr Alloy Thin Film Electrode[J]. 材料研究学报, 2021, 35(3): 193-200.
[11] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[12] XIE Mingling, ZHANG Guang'an, SHI Xing, TAN Xi, GAO Xiaoping, SONG Yuzhe. Anti-oxidization and Electronic Properties of Ti Doped MoS2 Films[J]. 材料研究学报, 2021, 35(1): 59-64.
[13] XUAN Jingfan, FAN Hongyu, BAI Ying, HU Ruihang, LI Xinyang, TAO Wenchen, NI Weiyuan, NIU Jinhai. Etching Behavior of Tungsten under Irradiation of Low Energy and High Flux Hydrogen Ions[J]. 材料研究学报, 2020, 34(9): 659-664.
[14] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
[15] WANG Shiqi,HUO Wenyi,XU Zhengchao,ZHANG Xuhai,ZHOU Xuefeng,FANG Feng. Fabrication of Films of Co Doped TiO2 Nanotube Array and their Photocatalytic Reduction Performance[J]. 材料研究学报, 2020, 34(3): 176-182.
No Suggested Reading articles found!