Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (4): 293-301    DOI: 10.11901/1005.3093.2020.143
ARTICLES Current Issue | Archive | Adv Search |
Control of Morphology of SnO2 Nanorod Array by Hydrothermal Reaction Process
YANG Gaoyuan1, XIANG Wenhao2, LIU Dezheng1, QU Junhao1, LIANG Ying1, LI Wangnan1, XU Ke1, ZHONG Jie2, HUANG Fuzhi2, CHEN Meihua1(), LIANG Guijie1()
1.Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
2.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Cite this article: 

YANG Gaoyuan, XIANG Wenhao, LIU Dezheng, QU Junhao, LIANG Ying, LI Wangnan, XU Ke, ZHONG Jie, HUANG Fuzhi, CHEN Meihua, LIANG Guijie. Control of Morphology of SnO2 Nanorod Array by Hydrothermal Reaction Process. Chinese Journal of Materials Research, 2021, 35(4): 293-301.

Download:  HTML  PDF(19765KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

One-dimensional SnO2 nanorod arrays (1D-SnO2 NRAs) have been synthesized through hydrothermal method. The influence of hydrothermal parameters such as precursor concentration, reaction time, temperature, number of reaction and NaCl addition on the growth and morphology of 1D-SnO2 NRAs were investigated by means of scanning electron microscopy with energy dispersive spectroscopy and X-ray diffractometer . The results show that the low precursor concentration is conducive to the preparation of nanorods with large aspect ratio, while the reaction time can selectively change the length of the nanorods. Interestingly, the growth of the nanorod array has apparent temperature sensitivity, that is, the rod length, diameter and substrate coverage all increase significantly as the reaction temperature increases. Furthermore, the NaCl additives in the precursor can favor the oriented growth, whilst restrain the substrate coverage of nanorods.

Key words:  inorganic non-metallic materials      SnO2 nanorod arrays      morphology control      oriented growth      hydrothermal process parameters      perovskite solar cells     
Received:  26 April 2020     
ZTFLH:  TB43  
Fund: Natural Science Foundation of Hubei Province(2019CFB774);Hubei Superior and Distinctive Discipline Group of " Mechatronics and Automobiles"(XKQ2020024)
About author:  LIANG Guijie, Tel: (0710)3590061, E-mail: guijie-liang@hbuas.edu.cn
CHEN Meihua, Tel: (0710)3590061, E-mail: yunluo886@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.143     OR     https://www.cjmr.org/EN/Y2021/V35/I4/293

Fig.1  Schematic diagram of the perovskite solar cells, ETL and HTL denote the electron transfer layer and hole transfer layer, respectively
Fig.2  X-ray diffractometry (XRD) patterns of SnO2 nanorod arrays using precursor of different content (a) and the intensity ratio of their corresponding (101)/(200) peaks (b)
Fig.3  SEM images of SnO2 nanorod arrays grown on FTO substrate (a~c) the surface morphology, (d~f) the cross-sectional of the samples with precursor content of 70 mg, 130 mg and 190 mg, respectively
Fig.4  X-ray diffractometry (XRD) patterns of SnO2 nanorod arrays for different reaction time (a) and the intensity ratio of their corresponding (101)/(200) peaks (b)
Fig.5  SEM images of SnO2 nanorod arrays grown on FTO substrate (a~c) denote the surface morphology and (d~f) denote the cross-sectional of the samples under hydrothermal reaction time of 12 h, 17 h and 20 h, respectively
Fig.6  X-ray diffractometry (XRD) patterns of SnO2 nanorod arrays with different hydrothermal reaction temperature (a) and the intensity ratio of their corresponding (101)/(200) peaks (b)
Fig.7  SEM images of SnO2 nanorod arrays grown on FTO substrate (a~c) denote the surface morphology and (d~f) denote the cross-sectional of the samples under reaction temperature of 180℃, 190℃ and 200℃, respectively
Fig.8  X-ray diffractometry (XRD) patterns of SnO2 nanorod arrays with different number of reactions (a) and the intensity ratio of their corresponding (101)/(200) peaks (b)
Fig.9  SEM images of SnO2 nanorod arrays grown on FTO substrate (a~c) denote the surface morphology and (d~f) denote the cross-sectional of the samples under reaction cycle of 1, 2 and 3, respectively
Fig.10  X-ray diffractometry (XRD) patterns of SnO2 nanorod arrays with different NaCl additions (a) and the intensity ratio of their corresponding (101)/(200) peaks (b)
Fig.11  SEM images of SnO2 nanorod arrays grown on FTO substrate (a~c) denote the surface morphology and (d~f) denote the cross-sectional of the samples under NaCl additions of 0 mL, 2 mL and 40 mL, respectively
Hydrothermal conditionsSize and morphology parameters of SnO2 nanorod arrays
Precursor content/mg/100 mLR / nmL / nmL / RCoverage
7010606Increases significantly with precursor content
13020904.5
190271204.4
Reaction time/hR / nmL / nmL / RCoverage
1220904.5Does Not change much over time
17201206
20201708.5
Reaction temperature/℃R / nmL / nmL / RCoverage
18020904.5Increases significantly with reaction temperature
190351604.6
200452505.6
Number of reactions/cyclesR / nmL / nmL / RCoverage
120904.5Increases slightly with number of reactions
2401804.5
3582704.6
NaCl addition/mL/100 mLR / nmL / nmL /RCoverage
020904.5Decreases slightly with NaCl addition
2161006.3
4121109.2
Table 1  Morphology parameters of SnO2 nanorod arrays prepared under different hydrothermal conditions
1 Kojima A, Teshima K, Shirai Y, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells [J]. J. Am. Chem. Soc., 2009, 131: 6050
2 Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell [J]. Nanoscale, 2011, 3: 4088
3 Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% [J]. Sci. Rep-UK., 2012, 2: 591
4 Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovski-tes [J]. Science, 2012, 338: 643
5 Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J]. Nature, 2013, 499: 316
6 Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells [J]. Nat. Mater., 2014, 13: 897
7 Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells [J]. Nature, 2015, 517: 476
8 Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells [J]. Science, 2017, 356: 1376
9 Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells [J]. Nat. Photonics, 2019, 13: 1
10 Sun C, Wu Z H, Yip H, et al. Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar-heterojunction perovskite solar cells [J]. Adv. Energy Mater., 2016, 6: 1501534
11 Xu X B, Liu Z H, Zuo Z X, et al. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode [J]. Nano Lett., 2015, 15: 2402
12 Zuo L, Guo H, Dequilettes D W, et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells [J]. Sci. Adv., 2017, 3: e1700106
13 Son D Y, Im J H, Kim H S, et al. 11% Efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system [J]. J. Phys. Chem. C, 2014, 118: 16567
14 Hu G, Guo W, Yang X, et al. Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect [J]. Nano Energy, 2016, 23: 27
15 Haque M A, Sheikh A D, Guan X, et al. Metal oxides as efficient charge transporters in perovskite solar cells [J]. Adv. Energy Mater., 2017: 1602803
16 Song J X, Hu W D, Wang X F, et al. HC(NH2)2PbI3 as thermally stable absorber for efficient ZnO-based perovskite solar cells [J]. J. Mater. Chem. A, 2016, 4: 8435
17 Leijtens T, Eperon G E, Pathak S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells [J]. Nat. Commun., 2013, 4: 2885
18 Li W Z, Zhang W, Stephan V R, et al. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification [J]. Energy Environ. Sci., 2016, 9: 490.
19 Yang J, Siempelkamp B D, Mosconi E, et al. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO [J]. Chem. Mater., 2015, 27: 4229
20 Kilic C, Zunger A. Origins of coexistence of conductivity and transparency in SnO2 [J]. Phy. Rev. Lett., 2002, 88: 095501
21 Song J X, Zheng E Q, Bai J, et al. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells [J]. J. Mater. Chem. A, 2015, 3: 10837
22 Zhang C X, Deng X S, Zheng J F, et al. Solution-synthesized SnO2 nanorod arrays for highly stable and efficient perovskite solar cells [J]. Electrochim. Acta, 2018, 283: 1134
23 Liu C, Zhu R, Ng A, et al. Investigation of high performance TiO2 nanorod array perovskite solar cells [J]. J. Mater. Chem. A, 2017, 5: 15970
24 Mahmood K, Swain B S, Amassian A. 16.1% Efficient hysteresis-free mesostructured perovskite solar cells based on synergistically improved ZnO nanorod arrays [J]. Adv. Energy Mater., 2015, 5: 1500568
25 Bi D, Boschloo G, Schwarzmüller S, et al. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells [J]. Nanoscale, 2013, 5: 11686
26 Zhao X Y, He P, et al. Bending durable and recyclable mesostructured perovskite solar cells based on superaligned ZnO nanorod electrode [J]. Solar RRL, 2018, 2: 1700194
27 Yang L, Wang X, Mai X, et al. Constructing efficient mixed-ion perovskite solar cells based on TiO2 nanorod array [J]. J. Colloid Interf. Sci., 2019, 534: 459
28 Chen M M, Wan L, Kong M Q, et al. Influence of rutile-TiO2 nanorod arrays on Pb-free (CH3NH3)3Bi2I9-based hybrid perovskite solar cells fabricated through two-step sequential solution process [J]. J. Alloy. Compd., 2018, 738: 422.
29 Li S, Zhang P, Wang Y, et al. Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition [J]. Nano Res., 2017, 010: 1092
30 Zhang X K, Rui Y C, Wang Y Q, et al. SnO2 nanorod arrays with tailored area density as efficient electron transport layers for perovskite solar cells [J]. J. Power Sources, 2018, 402: 460
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!