Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (4): 302-312    DOI: 10.11901/1005.3093.2020.328
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon
LI Wanxi(), DU Yi'en, GUO Fang, CHEN Yongqiang
Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
Cite this article: 

LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon. Chinese Journal of Materials Research, 2021, 35(4): 302-312.

Download:  HTML  PDF(15687KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

CoFe2O4-Co3Fe7 nanoparticles were successfully prepared by reducing CoFe2O4 nanoparticles in 5% H2 + 95% N2. Meanwhile, CoFe2O4 nanoparticles were successfully loaded onto the porous carbon by hydrothermal method with the porous carbon fiber calcined from jute fiber as precursor. The prepared two composites were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectrometer, and simultaneous thermal analyzer (STA). Their electromagnetic parameters and microwave absorption performances were measured by vector network analyzer (VNA). The results show that the microwave absorption performances of CoFe2O4-Co3Fe7 nanoparticles and CoFe2O4/porous carbon are obviously better than that of the plain CoFe2O4 nanoparticles. The effective bandwidth (frequency width of reflection loss <-10 dB) of CoFe2O4-Co3Fe7 nanoparticles is 4.8 GHz, while that of CoFe2O4/porous carbon can reach 6 GHz, covering the entire Ku band (12~18 GHz). The excellent microwave absorption performance can be attributed to the appropriate dielectric constant, large dielectric loss, porous structure, and the synergistic effect of dielectric loss and magnetic loss. Owing to the characteristics of low cost, low density and good microwave absorption performance, the CoFe2O4/porous carbon has broad application prospect for Ku band as an economic, lightweight and broadband microwave absorbent.

Key words:  composites      microwave absorption performance      hydrothermal method      CoFe2O4 nanoparticles      jute fiber      CoFe2O4/porous carbon     
Received:  07 August 2020     
ZTFLH:  TB332  
Fund: the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2019L0883);the Shanxi “1331 Project” Key Innovative Research Team(PY201817);the Jinzhong University “1331 Project” Key Innovative Research Team(jzxycxtd2019005)
About author:  LI Wanxi, Tel: 13613410452, E-mail: liwanxi1986@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.328     OR     https://www.cjmr.org/EN/Y2021/V35/I4/302

Fig.1  XRD patterns of as-synthesized samples (a) CF, (b) CF500, and (c) CF600
Fig.2  SEM and TEM images of CF (a, b), CF500 (c, d), and CF600 (e, f)
Fig.3  Frequency dependence of the reflection loss of paraffin in which content of CF (a), CF500 (b), and CF600 (c) is 75%
Fig.4  Frequency dependence of complex permittivity (a), complex permeability (b), and loss factor (c) of paraffin in which content of CF, CF500, and CF600 is 75%
Fig.5  Characteristic impedance (a) and attenuation constant (b) of paraffin in which content of CF, CF500, and CF600 is 75%
Fig.6  Frequency dependence of the reflection loss of paraffin in which content of CF500 (a) and CF600 (b) is 50%
Fig.7  Frequency dependence of complex permittivity (a), complex permeability (b), loss factor (c), Cole-Cole curves (ε′ versus ε") (d~e), and C0 values (f) of paraffin in which content of CF500 and CF600 is 50%
Fig.8  XRD pattern (a) and Raman spectra (b) of CoFe2O4/porous carbon
Fig.9  SEM images (a, b and c) of porous carbon loaded with CoFe2O4 nanoparticles and TEM image (d) of CoFe2O4 nanoparticles in CoFe2O4/porous carbon
Fig.10  TG curve of CoFe2O4/porous carbon in air atmosphere
Fig.11  Frequency dependence of reflection loss (a), complex permittivity (b), complex permeability (c), and loss factor (d) of CoFe2O4/porous carbon with 40% sample in paraffin
Sample

Thickness

/mm

Effective bandwidth

/GHz

Minimal reflection loss/dBReferences
NiFe2O4/polypyrrole2.04.542[37]
RGO-PANI-NiFe2O42.45.349.7[38]
Mesoporous Fe3O4/C2.02.0181[39]
Nickel/Carbon nanocomposites1.754.421.24[40]
MOF-derived porous Co/C nanocomposites2.55.8353[41]
CoFe2O4/graphene2.03.724.7[42]
Co3Fe7/C composite2.04.143.5[21]
CoFe2O4/porous carbon1.86.049.65This work
Table 1  Microwave absorption performances of some reported absorbents
1 Xie P T, Li H Y, He B, et al. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption [J]. J. Mater. Chem. C, 2018, 6(32): 8812
2 Lv H L, Ji G B, Liu W, et al. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features [J]. J. Mater. Chem. C, 2015, 3(39): 10232
3 Li X A, Du D X, Wang C S, et al. In situ synthesis of hierarchical rose-like porous Fe@C with enhanced electromagnetic wave absorption [J]. J. Mater. Chem. C, 2018, 6(38): 558
4 Wang K F, Chen Y J, Tian R, et al. Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance [J]. ACS Appl. Mater. Interfaces, 2018, 10(13): 11333
5 Shen G Z, Ren J Z, Zhao B, et al. Magnetic hollow mesoporous carbon composites with impedance matching for highly effective microwave absorption [J]. J. Mater. Sci., 2019, 54(5): 4024
6 Li N, Huang G W, Li Y Q, et al. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure [J]. ACS Appl. Mater. Interfaces, 2017, 9(3): 2973
7 Lin Y, Wang J J, Yang H B, et al. In situ preparation of PANI/ZnO/CoFe2O4 composite with enhanced microwave absorption performance [J]. J. Mater. Sci. Mater. Electron., 2017, 28(23): 1
8 Moitra D, Hazra S, Ghosh B K, et al. A facile low temperature method for the synthesis of CoFe2O4 nanoparticles possessing excellent microwave absorption properties [J]. RSC Adv., 2015, 5(63): 51130
9 Li Y F, Hu Y J, Huo J C, et al. Stable core shell Co3Fe7-CoFe2O4 nanoparticles synthesized via flame spray pyrolysis approach [J]. Ind. Eng. Chem. Res., 2012, 51(34): 11157
10 Li W X, Wang L C, Li G M, et al. Hollow CoFe2O4-Co3Fe7 microspheres applied in electromagnetic absorption [J]. J. Magn. Magn. Mater., 2015, 377(1): 259
11 Li G M, Wang L C, Li W X, et al. Fe-, Co-, and Ni-loaded porous activated carbon balls as lightweight microwave absorbents [J]. ChemPhysChem., 2016, 16(16): 3458
12 Zhang K C, Gao X B, Zhang Qian, et al. Synthesis, characterization and electromagnetic wave absorption properties of asphalt carbon coated graphene/magnetic NiFe2O4 modified multi-wall carbon nanotube composites [J]. J. Alloys Compd., 2017, 721(15): 268
13 Estevez D, Qin F X, Quan L, et al. Complementary design of nano-carbon/magnetic microwire hybrid fiber for tunable microwave absorption [J]. Carbon, 2018, 132: 486
14 Zhang Y L, Wang X X, Cao M S. Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption [J]. Nano Res., 2018, 11(3): 1426
15 Wang L X, Guan Y K, Qiu X, et al. Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal-organic framework [J]. Chem. Eng. J., 2017, 326: 945
16 Yan F, Guo D, Zhang S, et al. An ultra-small NiFe2O4 hollow particle/graphene hybrid: Fabrication and electromagnetic wave absorption property [J]. Nanoscale, 2018, 10(6): 2697
17 Liang X H, Quan B, Chen J B, et al. Nano bimetallic@carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications [J]. ACS Appl. Nano Mater., 2018, 1(10): 5712
18 Ruan W J, Mu C P, Wang B C, et al. Metal–organic framework derived cobalt phosphosulfide with ultrahigh microwave absorption properties [J]. Nanotechnology, 2018, 29: 405703
19 Zhao H Q, Cheng Y, Ma J N, et al. A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber [J]. Chem. Eng. J., 2018, 339(1): 432
20 Li W X, Wang L C, Li G M, et al. Co3Fe7/C core-shell microspheres as a lightweight microwave absorbent [J]. Mater. Chem. Phys., 2015, 163: 431
21 Li G M, Zhu B S, Liang L P, et al. Core-shell Co3Fe7@C composite as efficient microwave absorbent [J]. Acta Phys. -Chim. Sin., 2017, 33 (8): 1715
力国民, 朱保顺, 梁丽萍等. 基于核壳结构 Co3Fe7@C的高效微波吸收材料[J]. 物理化学学报, 2017, 33 (8): 1715
22 Du J H, Sun C, Bai S, et al. Microwave electromagnetic characteristics of a microcoiled carbon fibers/paraffin wax composite in Ku band [J]. J. Mater. Res., 2002, 17(05):1232
23 Jiang H, Guo J, Zhao L, et al. Preparation and microwave absorption properties of LiZn ferrite [J]. J. Inorg. Mater. 2010, 25(1): 73
江红, 郭佳, 赵璐等. LiZn铁氧体的制备和吸波性能研究 [J]. 无机材料学报, 2010, 25(1): 73
24 Cheng Y, Ji G B, Li Z Y, et al. Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio [J]. J. Alloys Compd., 2017, 704(15): 289
25 Xu Q, Wang L X, Zhu H L, et al. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nanoporous carbon [J]. Nanoscale, 2017, 9: 7408
26 Chen C, Xi J B, Zhou E, et al. Porous graphene microflowers for high-performance microwave absorption [J]. Nano-Micro Lett., 2018, 10: 26
27 Liang X H, Quan B, Man Z M, et al. Self-assembly three-dimensional porous carbon networks for efficient dielectric attenuation [J]. ACS Appl. Mater. Interfaces, 2019, 11(33), 30228
28 Wu Z C, Tian K, Huang T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance [J]. ACS. Appl. Mater. Inter, 2018,10 (3): 11108
29 Lv H L, Ji G B, Liang X H, et al. A novel rod-like MnO2@Fe loading on grapheme giving excellent electromagnetic absorption properties [J]. J. Mater. Chem. C, 2015, 3(19): 5056
30 Jiang Z Y, Si H X, Chen X, et al. Simultaneous enhancement of impedance matching and the absorption behavior of BN/RGO nanocomposites for effciency microwave absorption [J]. Compos. Commun., 2020, 22: 100503.
31 Quan B, Liang X H, Ji G B, et al. Cross-linking-derived synthesis of porous CoxNiy/C nanocomposites for excellent electromagnetic behaviors [J]. ACS Appl. Mater. Interfaces, 2017, 9 (44): 38814
32 Liu W, Tan S J, Yang Z H, et al. Enhanced low frequency electromagnetic properties of MOF-derived cobalt through interface design [J]. ACS Appl. Mater. Interfaces, 2018, 10(37),1
33 Wang G Z, Peng X G, Yu L, et al. Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition [J]. J. Mater. Chem. A, 2015, 3: 2734
34 Li N, Cao M H, Hu C W. A simple approach to spherical nickel-carbon monoliths as light-weight microwave absorbers [J]. J. Mater. Chem., 2012, 22: 18426
35 Cheng Y, Seow J Z Y, Zhao H Q, et al. A flexible and lightweight biomass reinforced microwave absorber [J]. Nano-Micro Lett., 2020, 12: 125
36 Liang X H, Man Z M, Quan B, et al. Environment stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption [J]. Nano-Micro Lett., 2020, 12: 102
37 Li Z T, Ye M Q, Han A J, et al. Preparation, characterization and microwave absorption properties of NiFe2O4 and its composites with conductive polymer [J]. J. Mater. Sci.-Mater. Electron., 2016, 27: 1031
38 Yan J, Huang Y, Chen X F, et al. Conducting polymers-NiFe2O4 coated on reduced graphene oxide sheets as electromagnetic (EM) wave absorption materials [J]. Synth. Metals, 2016, 221: 291
39 Zou C W, Yao Y D, Wei N D, et al. Electromagnetic wave absorption properties of mesoporous Fe3O4/C nanocomposites [J].Composites Part B, 2015, 77: 209
40 Xie P T, Li H Y, He B, et al. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption [J]. J. Mater. Chem. C, 2018, 6(32): 8812
41 Lü Y Y, Wang Y T, Li H L, et al. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties [J]. ACS Appl. Mater. Interfaces, 2015, 7(24): 13604
42 Fu M, Jiao Q Z, Zhao Y, et al. Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials [J]. J. Mater. Chem. A, 2014, 2(3): 735
43 Qiang R, Du Y C, Zhao H T, et al. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption [J]. J. Mater. Chem. A, 2015, 3(25): 13426
44 Ding D, Wang Y, Li X D, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption [J]. Carbon, 2017, 111: 722
45 Li G M, Wang L C, Li W X, et al. Mesoporous Fe/C and core-shell Fe-Fe3C@C composites as efficient microwave absorbents [J]. Microporous Mesoporous Mater., 2015, 211: 97
46 Fang J Y, Liu T, Chen Z, et al. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber [J]. Nanoscale, 2016, 8: 8899
47 Zhen L, Jiang J T, Shao W Z, et al. Resonance-antiresonance electromagnetic behavior in a disordered dielectric composite [J]. Appl. Phys. Lett., 2007, 90(14): 142907
48 Yang H B, Ye T, Lin Y. Microwave absorbing properties based on polyaniline/magnetic nanocomposite powders [J]. RSC Adv., 2015, 5(125): 103488
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[9] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[10] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[11] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[12] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
No Suggested Reading articles found!