Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (8): 621-627    DOI: 10.11901/1005.3093.2019.579
ARTICLES Current Issue | Archive | Adv Search |
Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3
ZUO Cheng, DU Yunhui(), ZHANG Peng, WANG Yujie, Cao Haitao
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
Cite this article: 

ZUO Cheng, DU Yunhui, ZHANG Peng, WANG Yujie, Cao Haitao. Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3. Chinese Journal of Materials Research, 2020, 34(8): 621-627.

Download:  HTML  PDF(3949KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Li1.2Mn0.54Ni0.13Co0.13O2 lithium-rich manganese-based cathode materials were prepared by sol-gel method, then coated with Al2O3 by uniform precipitation method, which further characterized by means of XRD, TEM and electrochemical properties analysis. Results show that the coated material still has the layered structure as its original status, Al2O3 was uniformly coated on the surface of the Li1.2Mn0.54Ni0.13Co0.13O2 particles to form a nano-scale coating. The initial discharge capacity of the Li1.2Mn0.54Ni0.13Co0.13O2 powder coated with 0.7% Al2O3 was 251.3 mAh/g under the condition of 0.1 C and 2.0~4.8 V. The first coulombic efficiency is 76.1%, and the capacity retention rate is 92.9% after 100 cycles., and the coating also effectively suppresses the voltage decay during the cycle. The proper amount of Al2O3 coating can effectively improve the electrochemical performance of the cathode material.

Key words:  inorganic non-metallic materials      Li1.2Mn0.54Ni0.13Co0.13O2      cathode material      Al2O3 coating      electrochemical performance     
Received:  10 December 2019     
ZTFLH:  TM911  
Fund: Natural Science Foundation of Beijing(2162036)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.579     OR     https://www.cjmr.org/EN/Y2020/V34/I8/621

Fig.1  XRD patterns of materials with different Al2O3 coating amounts
Coating amount/%, mass fractiona/nmc/nmc/aI(003)/I(104)
Pristine0.285021.423264.99351.2199
0.7%0.284931.422814.99361.2393
1.4%0.285111.423694.99351.2248
Table 1  Lattice parameters of materials with different Al2O3 coating amounts
Fig.2  TEM image of Li1.2Mn0.54Ni0.13Co0.13O2 pristine (a) and Al2O3 coated (b, c) sample
Fig.3  First charge/discharge curves of sample with different Al2O3 coating amounts

Coating amount

/%, mass fraction

1st charging specificcapacity

/mAh·g-1

1st dischargingspecific capacity/mAh·g-1Irreversiblecapacity loss/mAh·g-1

Coulomb efficiency

/%

pristine297.7213.78471.8%
0.7%330.1251.378.876.1%
1.4%303.7220.982.872.7%
Table 2  First charge/discharge parameter of sample with different Al2O3 coating amounts
Fig.4  Charge/Discharge curves of sample with different Al2O3 coating amounts under different cycles (a) Pristine (b) 0.7% Al2O3 coated (c) 1.4% Al2O3 coated (d) Discharge mid-point voltage
Fig.5  Cyclic performance of sample different Al2O3 coating amounts
Coating amoun /%, mass fraction1st discharging specific capacity/mAh·g-1100th discharging specific capacity/mAh·g-1Capacity retention rate after 100 cycles/%
Pristine213.7181.684.9%
0.7%251.3233.792.9%
1.4%220.9194.488%
Table 3  Cyclic parameter of sample different Al2O3 coating amounts
Fig.6  EIS curves and equivalent circuit of materials before and after Al2O3 coatingin the 3rd cycle (a) and in the 50th cycle (b)
Coating amount /%, mass fraction3rd cycle50th cycle
Rs/Ω·cm2RSEI/Ω·cm2RCT/Ω·cm2Rs/Ω·cm2RSEI/Ω·cm2RCT/Ω·cm2
Pristine16.9977.95109.5912.41278.16417.06
0.7%15.898.93100.7313.52106.43234.99
1.4%16.2104.97117.0112.74126.43260.64
Table 4  Impedance of equivalent circuit
[1] Liu J, Wen Z Y, Wu M M, et al. Progress on studies of the cathode materials for Li-ion batteries. Journal of Inorganic Materials [J], 2002, 17(1): 1
[2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359
doi: 10.1038/35104644 pmid: 11713543
[3] Fergus J W. Recent developments in cathode materials for lithium ion batteries [J]. Journal of Power Sources, 2010, 195(4): 939
[4] Lim S H, Cho J, Lim S H, et al. PVP-Assisted ZrO coating on LiMnO spinel cathode nanoparticles prepared by MnO nanowire templates [J]. Electrochemistry Communications, 2008, 10(10): 1478
[5] Gong C, Xue, Zhigang, Wen, Sheng, et al. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries [J]. Journal of Power Sources, 2016, 318: 93
[6] J.-S K, Johnson C S, Thackeray M M. Layered xLiMO2·(1-x)Li2MO3 electrodes for lithium batteries: a study of 0.95Li-Mn0.5-Ni0.5O2·0.05Li2TiO3 [J]. Electrochemistry Communications, 2002, 4(3): 205
[7] Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries [J]. J Mater Chem, 2007, 17(30): 3112
[8] Croy J R, Kang S H, Balasubramanian M, et al. LiMnO-based composite cathodes for lithium batteries: A novel synthesis approach and new structures [J]. Electrochemistry Communications, 2011, 13(10): 1063
[9] Cong L N, Gao X G, Ma S C, et al. Enhancement of electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with Li4Ti5O12 [J]. Electrochimica Acta, 2014, 115(Complete): 399
[10] Johnson C S, Li N, Lefief C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2 (0≤x≤0.7) [J]. Cheminform, 2008, 40(1): 6095
[11] Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3- stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries [J]. J Mater Chem, 2007, 17(30): 3112
[12] Zheng F, Yang C, Xiong X, et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade [J]. Angew Chem Int Ed, 2015, 54(44): 13058
[13] Xin S, Guo Y G A. Beijing. Electrode materials for lithium secondary batteries with high energy densities [J]. Scientia Sinica, 2011, 41(8): 1229
[14] ZHANG J, LEI Z, WANG J, et al. Surface Modification of Li1.2Ni0.13Mn0.54Co0.13O2 by hydrazine vapor as cathode material for lithium-ion batteries [J]. ACS Appl Mater Interface, 2015, 7(29): 15821
[15] Zheng J, Xu P, Meng G, et al. Structural and chemical evolution of Li- and Mn-Rich layered cathode material [J]. Chemistry of Materials, 2015, 27(4): 1381
[16] Zheng M, Huang J, Quan J, et al. Improved electrochemical performances of layered lithium rich oxide 0.6Li[Li1/3Mn2/3]O2·0.4LiMn5/12Ni5/12Co1/6O2 by Zr doping [J]. Rsc Advances, 2016, 6(25): 20522
doi: 10.1039/C5RA22330J
[17] Shi S. J, Tu J. P, Tang Y. Y,et al. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method [J]. Electrochimica Acta, 2013, 88(2): 671
doi: 10.1016/j.electacta.2012.10.111
[18] Zheng J M, Li J, Zhang Z R, et al. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery [J]. Solid State Ionics, 2008, 179: 1794
[19] Gao J, Kim J., Manthiram A.. High capacity Li[Li0.2Mn0.54Ni0.13-Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries [J]. Electrochemistry Communications, 2009, 11(1): 84
[20] Wang Z Y, Liu E Z, Guo L C, et al. Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating [J]. Surf. Coat. Tech., 2013, 235: 570
[21] Liu X Y, Liu J L, Huang T, et al. CaF2-coated Li1.2Mn0.54-Ni0.13Co0.13O2 as cathode materials for Li-ion batteries [J]. Electrochim. Acta, 2013, 109: 52
doi: 10.1016/j.electacta.2013.07.069
[22] ZHENG J M, ZHANG Z R, WU X B, et al. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery [J] Electrochem. Soc., 2008, 155(10): A775
doi: 10.1149/1.2966694
[23] Wu Y, Murugan A V, Manthiram A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4 [J]. Electrochem. Soc., 2008, 155(9): A635
doi: 10.1149/1.2948350
[24] Yu H, Wang Y, Asakura D, et al. Electrochemical kinetics of the 0.5Li2MnO3.0.5LiMn0.42Ni0.42Co0.16O2 ‘composite’ layered cathode material for lithium-ion batteries [J]. RSC Advances, 2012, 2(23): 8797
doi: 10.1039/c2ra20772a
[25] Zheng J M, Wu X B, Yang Y. Synthesis optimization, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material of lithium ion battery [J]. Chinese Journal of Power Sources, 2011, 35(10): 1188
[26] Cho J, Kim Y J, Park B. LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase [J]. Journal of The Electrochemical Society, 2001, 148(10): A1110
[27] Shaju K. M., Subba Rao G. V., et al, Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries [J]. Electrochimica Acta, 2003, 48: 145
[28] Cho Y H, Park S M, Yoshio M, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3-Co1/3]O2 prepared by carbonate co-precipitation method [J]. Power Sources, 2005, 142(1-2): 306
[29] Bonani S, Nomasonto R, et al. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries [J]. Power Sources, 2017, 353: 210
[30] Zheng J M, Gu M, Xiao J, et al. Functioning mechanism of AlF3 coating on the Li- and Mn-Rich cathode materials [J]. Chemistry of Materials, 2014, 26(22): 6320
[31] Zhang J, Lei Z H, et al. Surface Modification of Li1.2Mn0.54Ni0.13-Co0.13O2 by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries [J]. Applied materials and interfaces, 2015, 7: 15821
pmid: 26079270
[32] Qiu X Y, Zhuang Q C, Zhang Q Q, et al. Reprint of “Investigation of layered LiNi1/3Co1/3Mn1/3O2 cathode of lithium ion battery by electrochemical impedance spectroscopy” [J]. Electroanalytical Chemistry, 2013, 688: 393
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
No Suggested Reading articles found!