Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (8): 628-634    DOI: 10.11901/1005.3093.2019.600
ARTICLES Current Issue | Archive | Adv Search |
Deformation Mechanism of Nanoscale Polycrystalline α-Silicon Carbide Based on Molecular Dynamics Simulation
SHI Yuanji1, CHEN Xianbing1, WU Xiujuan1, WANG Hongjun1(), GUO Xunzhong2, LI Junwan3
1 School of Mechanical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210046, China
2 College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3 School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Cite this article: 

SHI Yuanji, CHEN Xianbing, WU Xiujuan, WANG Hongjun, GUO Xunzhong, LI Junwan. Deformation Mechanism of Nanoscale Polycrystalline α-Silicon Carbide Based on Molecular Dynamics Simulation. Chinese Journal of Materials Research, 2020, 34(8): 628-634.

Download:  HTML  PDF(16155KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on the molecular dynamics method, Vashishta potential function was used to study the plastic deformation mechanism of polycrystalline α-silicon carbide matrix under the action of nano indentation in terms of the effect of grain boundary and temperature. The load displacement curve was analyzed, and the change of atomic failure and migration path in the deformation area was described by identifying the deformation structure. As the contact load increased the amorphous phase transformation occurred in the contact zone and expanded to the crystal interior, which was blocked by the grain boundary. With the increase of the load, the grain boundary as the source of 1/2<110> perfect dislocation emission will slip at high stress level. In addition, with the increase of temperature the bearing capacity of SiC polycrystal decreases, especially the plastic deformation occurs inside the material, the dislocation grows from the grain boundary to the inside of the crystal, and finally forms 'U-shaped' dislocation ring.

Key words:  inorganic non-metallic materials      molecular dynamics      polycrystalline      α-silicon carbide      structural deformation      atomic scale     
Received:  25 December 2019     
ZTFLH:  TH117.3  
Fund: Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB430024);Natural Science Foundation of Jiangsu Province(BK20181036);National Science Foundation of NIIT(YK190109)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.600     OR     https://www.cjmr.org/EN/Y2020/V34/I8/628

Fig.1  Simulation model of nanoindentation of polycrystalline α-silicon carbide (α-SiC),the size of the simulation box is 15 nm×15 nm×15 nm
Fig.2  The relationship between contact force (P) and displacement (δ), (a) - (d) load-displacement curves of 10K, 300K, 600k and 900K are given respectively
Fig.3  Structural deformation during indentation (a)~(f) the distribution of IDS at h=1.0, 1.4, 1.8, 2.2, 2.6 and 3.0 nm
Fig.4  Distributions of von Mises stress of different depths under nanoindentation (a)~(f) the von Mises stress distribution at h =1.0, 1.4, 1.8, 2.2, 2.6 and 3.0 nm
Fig.5  Structural deformation during indentation at 900 K, (a)~(f) the distribution of IDS at h=1.0, 1.4, 1.8, 2.2, 2.6 and 3.0 nm
Fig.6  Dislocation evolution during indentation at 900K (a)~(f) the distribution of atomics structures at h=1.0, 1.4, 1.8, 2.2, 2.6 and 3.0 nm
[1] Padture N P. Advanced structural ceramics in aerospace propulsion [J]. Nature materials, 2016, 15(8): 804
pmid: 27443899
[2] Pan Q, Zhou H, Lu Q, et al. History-independent cyclic response of nanotwinned metals [J]. Nature, 2017, 551(7679): 214
pmid: 29088707
[3] Taloni A, Vodret M, Costantini G, et al. Size effects on the fracture of microscale and nanoscale materials [J]. Nature Reviews Materials, 2018, 3(7): 211
[4] Bourne N, Millett J, Pickup I. Delayed failure in shocked α-silicon carbide [j]. journal of applied physics, 1997, 81(9): 6019
[5] Millett J, Bourne N, Dandekar D. Delayed failure in a shock-loaded α-silicon carbide [J]. Journal of applied physics, 2005, 97(11): 113513
[6] Pickup I, Barker A. Damage kinetics in α-silicon carbide; proceedings of the AIP Conference Proceedings, F, 1998 [C]. AIP
[7] Plimpton S. Fast Parallel Algorithms for Short-Range Molecular-Dynamics [J]. J Comput Phys, 1995, 117(1): 1
[8] Kelchner C L, J P S, C H J. Dislocation nucleation and defect structure during surface indentation [J]. Phys Rev B, 1998, 5811085
[9] Branicio P S, Zhang J, Rino J P, et al. Shock-induced microstructural response of mono-and nanocrystalline SiC ceramics [J]. Journal of Applied Physics, 2018, 123(14): 145902
[10] Zhang J, Branicio P S. Molecular dynamics simulations of plane shock loading in SiC [J]. Procedia Engineering, 2014, 75150
[11] Makeev M A, Srivastava D. Hypersonic velocity impact on a-SiC target: A diagram of damage characteristics via molecular dynamics simulations [J]. Applied Physics Letters, 2008, 92(15): 151909
[12] Makeev M A, Srivastava D. Molecular dynamics simulations of hypersonic velocity impact protection properties of CNT/a-SiC composites [J]. Composites Science and Technology, 2008, 68(12): 2451
[13] Makeev M A, Sundaresh S, Srivastava D. Shock-wave propagation through pristine a-SiC and carbon-nanotube-reinforced a-SiC matrix composites [J]. Journal of Applied Physics, 2009, 106(1): 014311
[14] Hirel P. Atomsk: a tool for manipulating and converting atomic data files [J]. Comput Phys Commun, 2015, 197212
doi: 10.1016/j.cpc.2012.05.019 pmid: 25540463
[15] Xiang H, Li H, Fu T, et al. Formation of prismatic loops in AlN and GaN under nanoindentation [J]. Acta Materialia, 2017, 138131-9
pmid: 22368454
[16] Hoover W G. Constant-pressure equations of motion [J]. Physical Review A, 1986, 34(3): 2499
[17] Vashishta P, Kalia R K, Rino J P, et al. Interaction potential for SiO 2: a molecular-dynamics study of structural correlations [J]. Phys Rev B, 1990, 41(17): 12197
[18] Vashishta P, Kalia R K, Nakano A, et al. Interaction potential for α-silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous α-silicon carbide [J]. Journal of applied physics, 2007, 101(10): 103515
[19] Maras E, Trushin O, Stukowski A, et al. Global transition path search for dislocation formation in Ge on Si (001) [J]. Comput Phys Commun, 2016, 20513
[20] Sun S, Peng X, Xiang H, et al. Molecular dynamics simulation in single crystal 3C-SiC under nanoindentation: Formation of prismatic loops [J]. Ceramics International, 2017, 43(18): 16313
doi: 10.1016/j.ceramint.2017.09.003
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!