Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (1): 1-9    DOI: 10.11901/1005.3093.2022.248
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites
LIU Dongxuan, CHEN Ping(), CAO Xinrong, ZHOU Xue, LIU Ying
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites. Chinese Journal of Materials Research, 2023, 37(1): 1-9.

Download:  HTML  PDF(14609KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The bowl-like C@FeS2@NC (nitrogen doped carbon layer) composites were prepared via a multi-step process, namely the silicon dioxide microspheres were firstly coated with phenolic resin and then converted into carbon shell at high temperature, soon after which were subjected to solvothermal reaction, dopamine coating, high temperature vulcanization and sodium hydroxide etching. This composite material has an open three-dimensional bowl-like structure, which can well release the stress caused by volume change. Its large specific surface area (70.67 m2·g-1) has a lot of active sites. The double carbon shell composite consisted of an inner and an outer carbon shells, as a stable mechanical framework, can enhance the electrical conductivity, while the outer NC has a good protective effect. When this composite material is used as the negative electrode of lithium-ion battery, the discharge specific capacity and charge specific capacity of the first turn are 954.3 mAh·g-1 and 847.2 mAh·g-1, respectively at the current density of 0.2 A·g-1, and the corresponding Coulomb efficiency of the first turn is 88.78%. After 100 cycles, the discharge specific capacity is stable at 793.8 mAh·g-1.

Key words:  composite      lithium-ion batteries      anode materials      transition metal sulfides      electrochemical performance     
Received:  29 April 2022     
ZTFLH:  TM912  
Fund: the Liaoning Revitalization Talents Program(XLYC1802085);National Natural Science Foundation of China(51873109);Dalian Science and Technology Innovation Fund Project(2019J11CY007)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.248     OR     https://www.cjmr.org/EN/Y2023/V37/I1/1

Fig.1  Schematic illustration for the preparation of bowl-shaped C@FeS2@NC composites
Fig.2  XRD patterns (a) and Raman spectra (b) of C@FeS2@NC
Fig.3  Nitrogen adsorption-desorption isotherms and the pore size distribution curve of the C@FeS2@NC sample
Fig.4  XPS survey (a), Fe 2p (b), S 2p (c), C 1s (d) and N 1s high resolution spectrum (e) of C@FeS2@NC
Fig.5  SEM images of SiO2@RF (a), SiO2@C (b), SiO2@C@Fe-G (c),and SEM images of SiO2@C@Fe-G@PDA (d, e), SiO2@C@FeS2@NC (h, i) and bowl-shaped C@FeS2@NC with different magnifications (f, g)
Fig.6  TEM image of SiO2@RF (a), TEM images of bowl-shaped C@FeS2@NC with different magnifications (b, c), HRTEM image of bowl-shaped C@FeS2@NC (d), and corresponding EDX elemental mapping images of bowl-shaped C@FeS2@NC (e)
ElementsCNOSFeCu
Contents54.8610.866.369.514.3214.06
Table 1  Contents of each component of C@FeS2@NC (mass fraction, %)
Fig.7  CV curves of C@FeS2@NC at a scan rate of 0.1 mV·s-1
Fig.8  Electrochemical performance of bowl-shaped C@FeS2@NC composites (a) the discharge-charge voltage profiles at a current of 0.2 A·g-1, (b) cycling performance and coulombic efficiency at a current of 0.2 A·g-1, (c) rate performance and (d) the corresponding discharge-charge curves at different current densities
Fig.9  Long-cycle performance and coulombic efficiency of C@FeS2@NC and CoS2@FeS2 at a current of 1 A·g-1
Fig.10  SEM image of C@FeS2@NC after 500 cycles at 1 A·g-1 current density (a) and EIS spectra of C@FeS2@NC and C@FeS2 after 3 cycles at 1.2 V (b)
1 Chiang Y M. Building a better battery [J]. Science, 2010, 330: 1485
doi: 10.1126/science.1198591
2 Yang Z G, Zhang J L, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid [J]. Chem. Rev., 2011, 111: 3577
doi: 10.1021/cr100290v pmid: 21375330
3 Liu Q, Hao S Y, Feng D, et al. Research progress of anode materials for lithium ion battery [J]. Acta Mater. Compos. Sin., 2022, 39: 1446
刘 琦, 郝思雨, 冯 东 等. 锂离子电池负极材料研究进展 [J]. 复合材料学报, 2022, 39: 1446
4 Huang J J, Li Z K, Yang S Z, et al. Research progress of composite anode materials with high-capacity for lithium-ion batteries [J]. Car. Tech., 2019, 38(3): 1
黄家骏, 李子坤, 杨书展 等. 锂离子电池用高容量复合负极材料的研究进展 [J]. 炭素技术, 2019, 38(3): 1
5 Xie L L, Yang D S, Leng J. Synthesis and formation mechanism of lithium battery high-capacity anode material TiNb2O7 [J]. Chin. J. Mater. Res., 2020, 34: 385
谢礼兰, 杨冬升, 凌 静. 高容量锂电池负极材料TiNb2O7的合成及其机理 [J]. 材料研究学报, 2020, 34: 385
doi: 10.11901/1005.3093.2019.568
6 Zhang Y R, Lu F, Pan L, et al. Improved cycling stability of NiS2 cathodes through designing a "kiwano" hollow structure [J]. J. Mater. Chem., 2018, 6A: 11978
7 Jiao Y C, Mukhopadhyay A, Ma Y, et al. Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries [J]. Adv. Energy Mater., 2018, 8: 1702779
doi: 10.1002/aenm.201702779
8 Pei J, Geng H B, Ang E H, et al. Controlled synthesis of hollow C@TiO2@MoS2 hierarchical nanospheres for high-performance lithium-ion batteries [J]. Nanoscale, 2018, 10: 17327
doi: 10.1039/C8NR05451G
9 Wang H H, Lu S T, Chen Y, et al. Graphene/Co9S8 nanocomposite paper as a binder-free and free-standing anode for lithium-ion batteries [J]. J. Mater. Chem., 2015, 3A: 23677
10 Xie H Q, Chen M, Wu L M. Hierarchical nanostructured NiS/MoS2/C composite hollow spheres for high performance sodium-ion storage performance [J]. ACS Appl. Mater. Interfaces, 2019, 11: 41222
doi: 10.1021/acsami.9b11078
11 Xue H L, Jiao Q Z, Du J Y, et al. Hollow MoS2/rGO composites as high-performance anode materials for lithium-ion batteries [J]. Ionics, 2019, 25: 4659
doi: 10.1007/s11581-019-03041-1
12 Wang H J, Ma J J, Liu S, et al. CoS/CNTs hybrid structure for improved performance lithium ion battery [J]. J. Alloys Compd., 2016, 676: 551
doi: 10.1016/j.jallcom.2016.03.132
13 Xie Q, Xu Y X, Zhou Y C, et al. Preparation and lithium storage performance of rice-like core-shell FeS2/C nanoparticles [J]. CIESC J., 2021, 72: 2849
夏 青, 徐宇兴, 周运成 等. 核壳结构米粒状FeS2/C纳米材料制备及储锂性能研究 [J]. 化工学报, 2021, 72: 2849
14 Zhang H W, Noonan O, Huang X D, et al. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes [J]. ACS Nano, 2016, 10: 4579
doi: 10.1021/acsnano.6b00723 pmid: 27050771
15 Ding X D, Du C F, Li J R, et al. FeS2 microspheres wrapped by N-doped rGO from an Fe-based ionic liquid precursor for rechargeable lithium ion batteries [J]. Sustain. Energy Fuels, 2019, 3: 701
doi: 10.1039/C8SE00539G
16 Li Q, Yuan D X, Wang X X, et al. Facile synthesis of metal disulfides nanoparticles encapsulated by amorphous carbon composites as high-performance electrode materials for lithium storage [J]. J. Alloys Compd., 2019, 773: 97
doi: 10.1016/j.jallcom.2018.09.247
17 Maimaiti H, Awati A, Zhang D D, et al. Synthesis and photocatalytic CO2 reduction performance of aminated coal-based carbon nanoparticles [J]. RSC Adv., 2018, 8: 35989
doi: 10.1039/C8RA06062B
18 Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys. Rev., 2000, 61B: 14095
19 Chen G Z, Xu D W, Chen P, et al. Constructing and optimizing hollow bird-nest-patterned C@Fe3O4 composites as high-performance microwave absorbers [J]. J. Magn. Magn. Mater., 2021, 532: 167990
doi: 10.1016/j.jmmm.2021.167990
20 Gao R Z, Li X D, Liu W F, et al. Synthesis and Li-storage performance of hierarchical spheroid composites of MgFe2O4/C [J]. Chin. J. Mater. Res., 2018, 32: 713
高荣贞, 李晓冬, 刘文凤 等. 分级结构类球形MgFe2O4/C复合材料的制备及其储锂性能 [J]. 材料研究学报, 2018, 32: 713
21 Wang H G, Wang Y H, Li Y H, et al. Exceptional electrochemical performance of nitrogen-doped porous carbon for lithium storage [J]. Carbon, 2015, 82: 116
doi: 10.1016/j.carbon.2014.10.041
22 Chen X L, Shi T, Zhong K L, et al. Capacitive behavior of MoS2 decorated with FeS2@carbon nanospheres [J]. Chem. Eng. J., 2020, 379: 122240
doi: 10.1016/j.cej.2019.122240
23 Yang D D, Zhao M, Zhang R D, et al. NiS2 nanoparticles anchored on open carbon nanohelmets as an advanced anode for lithium-ion batteries [J]. Nanoscale Adv., 2020, 2: 512
doi: 10.1039/c9na00661c pmid: 36134007
24 Lin Y M, Qiu Z Z, Li D Z, et al. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries [J]. Energy Stor. Mater., 2018, 11: 67
25 Guo D, Yuan H R, Wang X C, et al. Urchin-like amorphous nitrogen-doped carbon nanotubes encapsulated with transition-metal-alloy@graphene core@shell nanoparticles for microwave energy attenuation [J]. ACS Appl. Mater. Interfaces, 2020, 12: 9628
doi: 10.1021/acsami.9b20412
26 Xu X Q, Ran F T, Fan Z M, et al. Bimetallic metal-organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption [J]. ACS Appl. Mater. Interfaces, 2020, 12: 17870
doi: 10.1021/acsami.0c01572
27 Shen L F, Yu L, Yu X Y, et al. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors [J]. Angew. Chem. Int. Ed., 2015, 54: 1868
doi: 10.1002/anie.201409776
28 Ma F X, Hu H, Wu H B, et al. Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties [J]. Adv. Mater., 2015, 27: 4097
doi: 10.1002/adma.201501130
29 Shen L F, Yu L, Wu H B, et al. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties [J]. Nat. Commun., 2015, 6: 6694
doi: 10.1038/ncomms7694 pmid: 25798849
30 Yang C C, Jing W T, Li C, et al. Synthesis of open helmet-like carbon skeletons for application in lithium-ion batteries [J]. J. Mater. Chem., 2018, 6A: 3877
31 Zhang M H, Xie H, Fan H S, et al. Two-dimensional carbon-coated CoS2 nanoplatelets issued from a novel Co(OH)(OCH3) precursor as anode materials for lithium ion batteries [J]. Appl. Surf. Sci., 2020, 516: 146133
doi: 10.1016/j.apsusc.2020.146133
32 Xu Q T, Xue H G, Guo S P. FeS2 walnut-like microspheres wrapped with rGO as anode material for high-capacity and long-cycle lithium-ion batteries [J]. Electrochim. Acta, 2018, 292: 1
doi: 10.1016/j.electacta.2018.09.135
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[9] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
No Suggested Reading articles found!