Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (12): 892-904    DOI: 10.11901/1005.3093.2020.127
ARTICLES Current Issue | Archive | Adv Search |
Hot Deformation Behavior of TC2 Titanium Alloy
LI Muze1,2, BAI Chunguang1,2(), ZHANG Zhiqiang1, ZHAO Jian1, XU Dongsheng1,2, WANG Yanfeng3
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Chaoyang Jinda Titanium Co. , Ltd. , Chaoyang 122000, China
Cite this article: 

LI Muze, BAI Chunguang, ZHANG Zhiqiang, ZHAO Jian, XU Dongsheng, WANG Yanfeng. Hot Deformation Behavior of TC2 Titanium Alloy. Chinese Journal of Materials Research, 2020, 34(12): 892-904.

Download:  HTML  PDF(27024KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The high temperature deformation behavior of TC2 Ti-alloy was investigated by means of finite element simulations and isothermal hot compression tests parallelly. Firstly, the characteristic stress-strain curves of TC2 were analyzed, and the high temperature constitutive equation and activation energy were acquired . Secondly, the microstructure evolution was observed with optical microscope. It was found that the globularization of α-phase is obvious at high temperature and low strain rate. Thirdly, the power dissipation and thermal processing map of TC2 Ti-alloy were drawn. And the deformation mechanism was characterized by strain rate sensitivity exponent m. Lastly, and the optimized processing window of TC2 Ti-alloy was determined as: (I) 760~825℃, 0.007~0.024 s-1; (II) 850~900℃, 0.018~0.37 s-1; and (III) 900~950℃, 1~10 s-1. Within these ranges the power dissipation rate of TC2 Ti-alloy is significant and sufficient dynamic recrystallization occurs in the process of deformation.

Key words:  metallic materials      TC2 titanium alloy      hot deformation      processing map      microstructural evolution     
Received:  17 April 2020     
ZTFLH:  TG146  
Fund: National Key Research and Development Program of China (Nos. 2017YFB0306201 &;2016YFB0701303

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.127     OR     https://www.cjmr.org/EN/Y2020/V34/I12/892

Fig.1  Original microstructure of experimental sample (a) cross section; (b) longitudinal section
ElementAlMnFeOCHNTi
Weight percentage4.01.670.0300.100.00600.00250.0040Bal.
Table 1  Chemical composition of TC2 titanium alloy used in experiments (%, mass fraction)
Fig.2  Process of the isothermal hot compression test
Fig.3  Temperature of samples measured during the compression test (a) 1 s-1 and (b) 10 s-1
Fig.4  Modified flow stress by linear interpolation (ε=0.4, ε˙=1 s-1)
Fig.5  Comparison of the flow stress corrected by interpolation and equation (a) 700℃, 1 s-1 and (b) 800℃, 1 s-1
Fig.6  Results of the simulation using stress-strain curves corrected by different methods before modification (a) and after modification (b)
Fig.7  Flow stress curves of TC2 titanium alloy obtained at different strain rate with temperature of 700℃ (a), 750℃ (b), 800℃ (c), 850℃ (d), 900℃ (e) and 950℃ (f)
Fig.8  Flow stress curves of TC2 titanium alloy obtained at different temperature and strain rate of 0.01 s-1 (a), 0.1 s-1 (b), 1 s-1 (c), and 10 s-1 (d)
Fig.9  Results of strain distribution got from simulation and test at 700℃ and 0.1 s-1
Fig.10  Microstructures at different areas at 700℃ and strain rate of 0.1 s-1
Fig.11  Microstructures of samples at different temperature with strain rate of 1 s-1 at 700℃ (a), 800℃ (b), and 900℃ (c)
Fig.12  Microstructures of samples at different strain rate with temperature of 750℃ (a) 0.01 s-1, (b) 0.1 s-1, (c) 1 s-1, and (d) 10 s-1
Fig.13  Relation curves of (a) lnε˙-lnσ, (b)?lnε˙-σ and (c)?lnε˙-lnsinhασ
Fig.14  The relation curves of lnsinhασ-1000T
Fig.15  Relation curves of lnZ-lnsinhασ
Fig.16  Comparison of calculated values and experimental values
Fig.17  m map of TC2 titanium alloy
Fig.18  Power dissipation map of TC2 titanium alloy
Fig.19  Processing map of TC2 titanium alloy
Fig.20  Effect of strain rate on the volume fraction of primary α phase
Fig.21  Effect of temperature on the volume fraction of primary α phase
Fig.22  Microstructure corresponding different area in the processing map of TC2 titanium alloy
1 Zhu Z S. Recent research and development of titanium alloys for aviation application in China [J]. J. Aeronaut. Mater., 2014, 34(4): 44
朱知寿. 我国航空用钛合金技术研究现状及发展 [J]. 航空材料学报, 2014, 34(4): 44
2 .Titanium and titanium alloys, Extruded bars and shapes, Aircraft quality [S].
3 Zhu Z S. Research and development of advanced new type titanium alloys for aeronautical applications [J]. Aeronaut. Sci. Technol., 2012, (1): 5
朱知寿. 航空结构用新型高性能钛合金材料技术研究与发展 [J]. 航空科学技术, 2012, (01): 5
4 Gao P F, Zhan M,Fan X G, et al. Hot deformation behavior and microstructure evolution of TA15 titanium alloy with nonuniform microstructure [J]. Mater. Sci. Eng., A, 2017, 689: 243
5 OuYang D L, Cui X, Lu S Q, et al. Hot compressive deformation and dynamic recrystallization of as-forged Ti-alloy TB6 during β process [J]. Chin. J. Mater. Res., 2019, 33(03): 218
欧阳德来, 崔霞, 鲁世强等. 锻态TB6钛合金β相区压缩变形行为和动态再结晶 [J]. 材料研究学报, 2019, 33(03): 218
6 Chen W, Zeng W D, Xu J W, et al. Deformation behavior and microstructure evolution during hot working of Ti60 alloy with lamellar starting microstructure [J]. J. Alloys Compd., 2019, 792: 389
7 Lin Y C, Pang G D, Jiang Y Q, et al. Hot compressive deformation behavior and microstructure evolution of a Ti-55511 alloy with basket-weave microstructures [J]. Vacuum, 2019, 169: 108878
8 Bao R Q, Huang X, Cao C X, et al. Application of processing maps in hot working of titanium alloy [J]. Mater. Rev., 2004, 18(07): 30
鲍如强, 黄旭, 曹春晓等. 加工图在钛合金中的应用 [J]. 材料导报, 2004, 18(07): 30
9 Kumar K B, Saxena K K, Dey S R, et al. Processing map-microstructure evolution correlation of hot compressed near alpha titanium alloy (TiHy 600) [J]. J. Alloys Compd., 2016, 691: 906
10 Wang Z, Wang X N, Zhu Z S. Characterization of high-temperature deformation behavior andprocessing map of TB17 titanium alloy [J]. J. Alloys Compd., 2017, 692: 149
11 Balasundar I, Ravi K R, Raghu T. On the high temperature deformation behaviour of titanium alloy BT3-1 [J]. Mater. Sci. Eng., A, 2017, 684: 135
12 Xu X, Dong L M, Ba H B, et al. Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field [J]. Trans. Nonferrous Met. Soc. China, 2016, 26(11): 2874
13 Fan X G, Yang H. Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution [J].Int. J. Plast., 2011, 27(11): 1833
14 Jia B H. Study on plastic deformation mechanism and constitutive relation of titanium alloy [D]. Beijing: Beijing Institute of Technology, 2015
贾宝华. 钛合金材料的塑性变形机制及本构关系研究 [D]. 北京:北京理工大学, 2015
15 Zhang Z X, Fan J K, Tang B, et al. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 49: 56
16 Liang H Q,Guo H Z,Nan Y, et al.The identification of dynamic recrystallization type during hot deformation process [J]. Sci. China,2014, 44(12): 1309
梁后权, 郭鸿镇, 南洋等.高温变形过程中的动态再结晶类型识别 [J]. 中国科学, 2014, 44(12): 1309
17 Chen H Q, Lin H Z, Guo L, et al. Progress on hot deformation mechanisms andmicrostructure evolution of titanium alloys [J]. J. Mater. Eng., 2007, (01): 61
陈慧琴, 林好转, 郭灵等. 钛合金热变形机制及微观组织演变规律的研究进展 [J]. 材料工程, 2007, (01): 61
18 Meng Q G. Research on plastic deformation behavior of ATI425 alloy [D]. Beijing: University of Chinese Academy of Sciences, 2016
孟庆刚. ATI425合金的塑性变形行为研究 [D]. 北京: 中国科学院大学, 2016
19 Chang L W, Zheng L W. Isothermal compression behavior and constitutive modeling of Ti-5Al-5Mo-5V-1Cr-1Fe alloy [J]. Nonferrous Met. Soc. China, Trans., 2018, 28(06): 1114
20 Mikhaylovskaya A V, Mosleh A O, et al. Superplastic deformation behaviour and microstructure evolution of near-α Ti-Al-Mn alloy [J]. Mater. Sci. Eng., A, 2017, 708: 469
21 Yu D J, Xu D S,Wang H, et al. Refining constitutive relation by integration of finite element simulations and Gleeble experiments [J]. J. Mater. Sci. Technol., 2019, 35(06): 1039
22 Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14(9): 1136
23 Liang H Q, Nan Y, Ning Y Q, et al. Correlation between strain-rate sensitivity and dynamic softening behavior during hot processing [J]. J. Alloys Compd., 2015, 632: 478
24 Han J, Kang S H, Lee S J, et al. Superplasticity in a lean Fe-Mn-Al steel [J]. Nat. Commun., 2017, 8(01): 751
25 Huang B, Miao X, Luo X, et al. Microstructure and texture evolution near the adiabatic shear band (ASB) in TC17 Titanium alloy with starting equiaxed microstructure studied by EBSD [J]. Mater. Charact., 2019, 151: 151
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!