Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (12): 905-914    DOI: 10.11901/1005.3093.2020.443
ARTICLES Current Issue | Archive | Adv Search |
Fabrication of Nano-porous Co by Dealloying for Supercapacitor and Azo-dye Degradation
CHEN Feng, ZHOU Yang, CHEN Yannan, LIN Zongling, QIN Fengxiang()
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Cite this article: 

CHEN Feng, ZHOU Yang, CHEN Yannan, LIN Zongling, QIN Fengxiang. Fabrication of Nano-porous Co by Dealloying for Supercapacitor and Azo-dye Degradation. Chinese Journal of Materials Research, 2020, 34(12): 905-914.

Download:  HTML  PDF(7049KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nano-porous Co was prepared by electrochemically dealloying of Zr56Al16Co28 amorphous alloy in 0.5%(mass fraction) NH4F and 1 mol/L (NH4)2SO4 mixed solution. Nano-porous Co has the bicontinuous porous structure with large specific surface area and fast charge transfer ability. The prepared nano-porous Co exhibits good performance in many aspects: firstly, it delivers a high specific capacitance of 318 F/g at 2 A/g, suggesting its good performance as supercapacitor electrode; secondly, it exhibits degradation efficiencies under square wave potential as high as 96% for Direct Blue 6 and Acid Orange II respectively. The degradation ability of nano-porous Co electrode per unit mass is 3.5 times higher than that of Zr56Al16Co28 amorphous alloy electrode.

Key words:  metallic materials      nanoporous Co      dealloying      supercapacitor      degradation     
Received:  23 October 2020     
ZTFLH:  TG430.40  
Fund: National Natural Science Foundation of China(51671106);Natural Science Foundation of Jiangsu Province(BK20171424)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.443     OR     https://www.cjmr.org/EN/Y2020/V34/I12/905

Fig.1  XRD pattern (a) andpolarization curve of Zr56Al16Co28 amorphous alloy in 0.5% NH4F+1 mol/L (NH4)2SO4 solution (b)
Fig.2  SEM image of the Zr56Al16Co28 amorphous alloy after dealloying. Inset: pore size distribution diagram (a) and corresponding EDS spectra (b)
Fig.3  TEM image (a) and SAED (b) of nanoporous Co
Fig.4  XPS spectra ofZr 3d (a), Al 2p(b), Co 2p (c) and O 1s (d) for nanoporous Co
Fig.5  CV curves of nanoporous Co at different scan rate (a), GCD curves of nanoporous in different current density (b), Corresponding specific capacitance in different current density (c) and Nyquist plots of EIS (d). Inset: magnified high frequency regions of Nyquist plots
Fig.6  UV-Vis spectra of DB6 (a) and AOII (b) solutions after degradation by nanoporous Co at different square wave potential, corresponding degradation efficiency (c)
Fig.7  UV-Vis spectra of DB6 (a) and AOII (b) solutions after degradation by nanoporous Co by different cycles, corresponding degradation efficiency (c)
Fig.8  Square wave potential diagrams ofnanoporous Co (a, b) andZr56Al16Co28 amorphous alloy (c, d) in DB6 and AOII solution; Fading effect diagrams of DB6 (e) and AOII (f): (i) original solution; (ii) solution degraded by nanoporous Co; (iii) solution degraded by Zr56Al16Co28 amorphous alloy
Fig.9  UV-Vis spectra of DB6 (a) and AOII solutions (b) after degradation by nanoporous Co and Zr56Al16Co28 amorphous alloy
Fig.10  XPS spectra of degradation products in (i) DB6 and (ii) AOII solutions (a) Zr 3d, (b) Al 2p, (c) Co 2p, (d) Na 1s, (e) S 2p and (f) O 1s spectrum
ElectrodeηDB6 /%Df-DB6ηAOII /%Df-AOII
NP Co97.140.142996.920.1425
Zr56Al16Co2897.910.041296.780.0403
Table 1  The degradation efficiency (η) and degradation factor (Df) of nanoporous Co and Zr56Al16Co28 amorphous alloy electrodes for DB6 and AOII solutions
1 Moitra D, Anand C, Ghosh B, et al. One-dimensional BiFeO3 nanowire-reduced graphene oxide nanocomposite as excellent supercapacitor electrode material [J]. ACS Appl. Energ. Mater., 2018, 1(2): 464
2 Yang T, Zhang W, Li L, et al. In-situ synthesized ZnFe2O4 firmly anchored to the surface of MWCNTs as a long-life anode material with high lithium storage performance [J]. Appl. Surf. Sci., 2017, 425: 978
3 Venkateswarlu P, Umeshbabu E, Kumar U N, et al. Facile hydrothermal synthesis of urchin-like cobalt manganese spinel for high-performance supercapacitor applications [J]. J. Colloid Interf. Sci., 2017, 503: 17
4 Zheng X, Ye Y, Yang Q, et al. Hierarchical structures composed of MnCo2O4@MnO2 core-shell nanowire arrays with enhanced supercapacitor properties [J]. Dalton Trans., 2016, 45: 572
5 Robinson T, Mcmullan G, Marchant R, et al. Remediation of dyes in textile effuent: a critical review on current treatment technologies with a proposed alternative [J]. Bioresour. Technol., 2001, 77 (3): 247
6 Stolz A. Basic and applied aspects in the microbial degradation of azo dyes [J]. Appl. Microbiol. Biot., 2001, 56(1-2): 69
7 Oh S W, Kang M N, Cho C W, et al. Detection of carcinogenic amines from dyestuffs or dyed substrates [J]. Dyes Pigm., 1997, 33(2): 119
8 Bonin P M L, Bejan D, Schutt L, et al. Electrochemical reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine in aqueous solutions [J]. Environ. Sci. Technol., 2004, 38(5): 1595
9 Valero D, Ortiz J M, Exposito E, et al. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater [J]. Environ. Sci. Technol., 2010, 44(13): 5182
10 Ciríaco L, Anjo C, Correia J, et al. Electrochemical degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes [J]. Electrochim. Acta, 2009, 54(5): 1464
11 Martínez-Huitle C A, Brillas E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review [J]. Appl. Catal. B Environ., 2009, 87(3-4): 105
12 Sala M, Gutierrez-Bouzan M C. Electrochemical techniques in textile processes and wastewater treatment [J]. Int. J. Photoenergy, 2012, 2012: 629103
13 Sirés I, Cabot P L, Centellas F. Electrochemical degradation of clofibric acid in water by anodic oxidation: Comparative study with platinum and boron-doped diamond electrodes [J]. Electrochim. Acta, 2006, 52(1): 75
14 Carter K E, Farrell J. Oxidative destruction of perfluorooctane sulfonate using boron-doped diamond film electrodes [J]. Environ. Sci. Technol., 2015, 42(16): 6111
15 Chaplin B P, Schrader G, Farrell J. Electrochemical oxidation of nnitrosodimethylamine with boron-doped diamond film electrodes [J]. Environ. Sci. Technol., 2009, 43(21): 8302
16 Zhao Y, Chu J, Li S H, et al. Preparation of Pt-Fe2O3 nano-electrode array on goldnano-wires and its application to the catalytic degradation of methyl orange [J]. Chem. Eng. J., 2011, 170(2-3): 440
17 Sha Y Y, Mathew I, Cui Q Z, et al. Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles [J]. Chemosphere, 2016, 144: 1530
18 Wang J Q, Liu Y H, Chen M W, et al. Rapid degradation of azo dye by Fe-based metallic glass powder [J]. Adv. Funct. Mater., 2012, 22(12): 2567
19 Ding Y, Chen M W. Nanoporous metals for catalytic and optical applications [J]. MRS Bull., 2009, 34(8): 569
20 Wang X G, Wang W M, Qi Z, et al. Fabrication, microstructure and electrocatalytic property of novel nanoporous palladium composites [J]. J. Alloys Compd., 2010, 508(2): 463
21 Lang X Y, Yuan H T, Iwasa Y, et al. Three-dimensional nanoporous gold for electrochemical supercapacitors [J]. 2011, Scripta Mater., 2011, 64: 923
22 Hakamada M, Mabuchi M. Preparation of nanoporous palladium by dealloying: Anodic polarization behaviors of Pd-M (M=Fe, Co, Ni) alloys [J]. Mater. Trans., 2009, 50(3): 431
23 Zeng Y Q, Yang S C, Xiang H, Chen L Y, Chen MW, Inoue A, Zhang X H, Jiang J Q. Multicomponent nanoporous metals prepared by dealloying PdNiP metallic glasses [J]. Intermetallics, 2015, 61: 66
24 Dan Z H, Qin F X, Makino A, et al. Fabrication of nanoporous copper by dealloying of amorphous Ti-Cu-Ag alloys [J]. J. Alloys Compd., 2014, 586: S134
25 Xu W, Zhu S L, Liang Y Q, et al. Synthesis of rutile -brookite TiO2 by dealloying Ti-Cu amorphous alloy [J]. Mater. Res. Bull., 2016,73: 290
26 Wang Y, Yin Z L, Wang Z X, et al. Facile construction of Co(OH)2@Ni(OH)2 core-shell nanosheets on nickel foam as three dimensional free-standing electrode for supercapacitors [J]. Electrochim. Acta, 2019, 293: 40
27 Weng N, Wang F, Qin F X, et al. Enhanced azo-dyes degradation performance of Fe-Si-B-P nanoporous architecture [J]. Materials, 2017, 10(9): 1001
28 Stylidi M, Kondarides D I, Verykios X E. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions [J]. Appl. Catal. B-Environ., 2003, 40(4): 271
29 Li S H, Zhao Y, Chu Y, et al. Electrochemical degradation of methyl orange on Pt-Bi/C nanostructured electrode by a square-wave potential method [J]. Electrochim. Acta, 2013, 92: 93
30 Wang F, Wang H, Zhang H F, et al. Superior azo-dye degradation of Fe-Si-B-P amorphous powders with graphene oxide addition [J]. J. Non-Cryst. Solids, 2018, 491: 34
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!