Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (2): 103-108    DOI: 10.11901/1005.3093.2018.391
Current Issue | Archive | Adv Search |
Effect of Quenching Rate on Properties of Automotive High Strength Al-alloy
Chengbo LI1,2(),Yunlai DENG1,Jianguo TANG1,Jianxiang LI2,Xinming ZHANG1
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China
2. Guangdong Hoshion Industrial Aluminium Co. Ltd., Zhongshan 528463, China
Cite this article: 

Chengbo LI,Yunlai DENG,Jianguo TANG,Jianxiang LI,Xinming ZHANG. Effect of Quenching Rate on Properties of Automotive High Strength Al-alloy. Chinese Journal of Materials Research, 2019, 33(2): 103-108.

Download:  HTML  PDF(9566KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of quenching rate on the microstructure and properties of automotive high-strength Al-alloys were investigated by mechanical property testing, electrical conductivity measurement and transmission electron microscopy. The results show that as the quenching rate decreased from 960oC/s to 1.8oC/s, the electrical conductivity increased by 5.7% IACS, the hardness reduction rate is 40%, and the reduction rates of tensile strength and yield strength are 24.2% and 56.9%, respectively. The hardness and strength are linearly related to the logarithm of quenching rate. With the decrease of quenching rate, the size and area fraction of quenching precipitates increase significantly, resulting in the decrease of performance. When the quenching rate is 1.8oC/s, the average size and the area fraction of the quenching precipitate are 465.6 nm×158.2 nm and 42.1%, respectively.

Key words:  metallic materials      high-strength aluminum alloys      automobile      quenching rate      micro-structure     
Received:  13 June 2018     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Plan of China(2016YFB0300900);National Natural Science Foundation of China(51474240);Zhongshan City Science and Technology Bureau Major Special Project(2016A1001)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.391     OR     https://www.cjmr.org/EN/Y2019/V33/I2/103

Fig.1  Conductivity at different quenching rates (a)T4,(b)T6
Fig.2  Hardness at different quenching rates
Fig.3  Effect of quenching rates on tensile strength (a) and elongation (b)
Fig.4  Effect of quenching rates on precipitation phase in the grain (a) 960℃/s, (b) 98℃/s, (c) 10.8℃/s, (d) 1.8℃/s
Fig.5  Effect of quenching rates on size and area fraction of precipitates in the grain. (a) relationship between quenching rate and size of precipitated phase;(b) relationship between quenching rate and area fraction of precipitated phases (L—length; T—thickness)
Fig.6  Effect of the size and area fraction of precipitated phases on electrical conductivity (a) T4, (b) T6
Fig.7  Effect of the size and area fraction of the precipitated phase on hardness (a) and strength (b)
[1] Heinz A, Haszler A, Keidel C. Recent development inaluminum alloys for aerospace applications [J]. Mater. Sci. Eng. A, 2000, 280(3): 102
[2] He Z B,Fan X B,Yuan S J. Review of hot forming-quenching integrated process of aluminum alloy [J]. J. Net. forming Eng., 2014, 6(5): 37
[2] (何祝斌, 凡晓波, 苑世剑. 铝合金板材热成形—淬火一体化工艺研究进展 [J]. 精密成形工程, 2014, 6(5): 37)
[3] Liu S D, Li C B, Zhang X M. Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy [J]. J. Alloys Compd., 2015, 625: 34
[4] Zhang X M, Liu W J, Liu S D. Effect of processing parameters on quench sensitivity of an AA7050 sheet [J]. Mater. Sci. Eng. A, 2011, 528: 795
[5] Lima S T, Yun S J, Namb S W. Improved quench sensitivity in modi?ed aluminum alloy 7175 for thickforging applications [J]. Mater. Sci. Eng. A, 2004, 371(1/2): 82
[6] Zhang Y. Quench sensitivity of 7xxx series aluminium alloys [D]. Melbourne: Monash University, 2014
[7] Liu W J. The research about the quench induced precipitation and quenching sensitivty of Al-Zn-Mg-Cu alloys [D]. Changsha: Central South University, 2011
[7] (刘文军. Al-Zn-Mg-Cu铝合金淬火析出行为及淬火敏感性研究 [D]. 长沙: 中南大学, 2011)
[8] Liu S D, Zhang X M, Huang Z B. Effects of quenching rates on microstructure and mechanical properties of 7055 aluminum alloy [J]. Mater. Sci. Tec., 2008, 12 (5): 650
[8] (刘胜胆, 张新明, 黄振宝. 淬火速率对7055铝合金组织和力学性能的影响 [J]. 材料科学与工艺, 2008, 12 (5): 650)
[9] Li C B, Zhang X M, Liu S D, Quench sensitivity relative to exfoliation corrosion of 7085 aluminum alloy [J]. Chin J. Mater. Res.,2013, 27(5): 454
[9] (李承波, 张新明, 刘胜胆. 7085铝合金剥落腐蚀的淬火敏感性[J].材料研究学报, 2013, 27(5) :454)
[10] Chen S Y, Chen K H, Peng G S, et al. Effect of hot deformation temperature and quench rate on microstructure and property of 7085 aluminum alloy [J]. Chin. J. Nonferrous Met., 2012, 22(4): 1033
[10] (陈送义, 陈康华, 彭国胜等. 热变形温度和淬火速率对7085 铝合金组织和性能的影响 [J]. 中国有色金属学报, 2012, 22(4): 1033)
[11] Chen S Y, Chen K H, Peng G S, et al. Effect of quenching rate on microstructure and stress corrosion cracking of 7085 aluminum alloy [J]. Trans. Nonferrous Metals Soc. China, 2012, 22(1): 47
[12] Li C B, Zhang X M, Liu S D. Hardenability of four homogenized Al-Zn-Mg-Cu aluminum alloys [J]. Cent. J. South Univ. Technol.,2017, 48(7): 1712
[12] (李承波, 张新明, 刘胜胆. 4种均匀化态Al-Zn-Mg-Cu合金的淬透性 [J].中南大学学报(自然科学版), 2017, 48(7): 1712)
[13] Liu S D, Li C B, OuYang H, et al. Quench sensitivity of ultra-high strength 7000 series aluminum alloys [J]. Chin. J. Nonferrous Met., 2013, 23(4):927
[13] (刘胜胆, 李承波, 欧阳惠等. 超高强7000系铝合金的淬火敏感性 [J]. 中国有色金属学报, 2013, 23(4): 927)
[14] Li C B, Liu S D, Zhang X M. Effect of Zener-Hollomon parameter on quench sensitivity of 7085 aluminum alloy [J]. J. Alloys Compd., 2016, 688: 456
[15] Zhang X M, Zhang D Z, Liu S D, et al. Hardenability of three 7000 series aluminum alloys based on Jominy end quench test [J]. Cent. J. South Univ. Technol., 2015, 46(2): 421
[15] (张新明, 张端正, 刘胜胆等. 基于末端淬火试验研究3种7000 系铝合金的淬透性 [J]. 中南大学学报(自然科学版), 2015,46(2): 421)
[16] Tang J G, Chen H, Zhang X M, et al. Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy [J]. Trans. Nonferrous Metals Soc. China, 2012, 22(6): 1255
[17] Godard D, Archambault P, Aeby-Gautier E, et al. Precipitation sequences during quenching of the AA7010 alloy [J]. Act Mater. 2002, 50(9): 2319
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!