Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (2): 109-116    DOI: 10.11901/1005.3093.2018.504
Current Issue | Archive | Adv Search |
Deformation Behavior and Micro-mechanism of As-extruded 6013-T4 Al Alloy under Dynamic Impact Loading
Tuo YE1,2,3,Yuanzhi WU1,3(),Anmin LIU1,3,Xu TANG2,Luoxing LI2
1. Research Institute of Automobile Parts Technology, Hunan Institute of Technology, Hengyang 421002, China
2. State Key Laboratory Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China
3. School of Mechanical and Engineering, Hunan University, Changsha 421002, China
Cite this article: 

Tuo YE,Yuanzhi WU,Anmin LIU,Xu TANG,Luoxing LI. Deformation Behavior and Micro-mechanism of As-extruded 6013-T4 Al Alloy under Dynamic Impact Loading. Chinese Journal of Materials Research, 2019, 33(2): 109-116.

Download:  HTML  PDF(9083KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dynamic compression tests of the as-extruded 6013-T4 Al-alloy were carried out via split Hopkinson pressure bar at room temperature with strain rates ranging from 1×103 s-1 to 3×103 s-1. The results show that the alloy exhibits obvious strain hardening and positive strain rate sensitivity. The density of the dislocation increases with the increasing strain and strain rate. High strain rate and large strain deformation lead to the pile-up of dislocations. Under the same impact condition, the 0° specimen displays the highest stress level, and the 45° specimen has the lowest one. The Schmid factors for each type of the main texture components were calculated. The max Schmid factors are 0.27 for 0°, 45° and 90° specimens, and 0.49 and 0.41 for {112}<111> texture; they are 0.27, 0.43 and 0.41 for {110}<111> texture. The Schmid factors of 0° specimens are always the smallest, which results in a higher stress level. When the specimens were dynamic compressed under the same strain and strain rate, the dislocation density of 0° specimen is the highest. Therefore, it is necessary to consider the strain rate sensitivity, anisotropic mechanical behavior and microstructure evolution in the material selection and structural design of components subjected impact loads.

Key words:  metallic materials      6013-T4 aluminum alloy      dynamic compression      anisotropy      micro-structure evolution     
Received:  13 August 2018     
ZTFLH:  TG146  
Fund: National Natural Science Foundation of China(51501061);National Key Research and Develop-ment Plans(2016YFB0101700);Natural Science Foundation of Hunan Province(2018JJ4031);Hengyang Science and Technology Guidance Project(2017KJ254)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.504     OR     https://www.cjmr.org/EN/Y2019/V33/I2/109

Fig.1  Schematic diagram of 6013-T4 aluminum alloy sample
Fig.2  Schematic diagram of SHPB experimental device
Fig.3  Schematic diagram of microstructure observation plane
Fig.4  True stress-true strain curves of 6013-T4 alloy under dynamic compression (a) 1000 s-1, (b) 2000 s-1, (c) 3000 s-1
Fig.5  TEM images of 6013-T4 alloy 0° specimens under dynamic compression with different strains (a) 0.25, (b) 0.5, (c) 0.75
Fig.6  Strain rate sensitivity of 6013-T4 alloy under dynamic compression with different strains (a) strain=0.05, (b) strain=0.1
Fig.7  TEM images of 6013-T4 alloy 0° specimen compressed with different strain rates (a) 1000 s-1, (b) 2000 s-1, (c) 3000 s-1
Fig.8  Anisotropic mechanical properties of 6013-T4 aluminum alloy (a) strain=0.05; (b) strain=0.1
Fig.9  Optical microstructure of extruded 6013-T4 aluminum alloy
Fig.10  ODF of extruded 6013-T4 aluminum alloy
Fig.11  TEM images of 6013-T4 alloy samples under dynamic impact with different directions (a) 0°; (b) 45°; (c) 90°
[1] Zhang J, Ma M, Shen F, et al. Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al-Mg-Si alloy cables [J]. Mater. Sci. Eng. A, 2018, 710: 27
[2] Liu M P, Wei J T, Li Y C, et al. Dynamic aging behavior and mechanical properties of an Al-Mg-Si aluminum alloy induced by equal channel angular pressing [J]. Chin. J. Mater. Res., 2016, 30(10): 721
[2] (刘满平, 韦江涛, 李毅超等. 等通道转角挤压 Al-Mg-Si 铝合金的动态时效特性和力学性能 [J]. 材料研究学报, 2016, 30(10): 721)
[3] Li H, Yan Z, Cao L. Bake hardening behavior and precipitation kinetic of a novel Al-Mg-Si-Cu aluminum alloy for lightweight automotive body [J]. Mater. Sci. Eng. A, 2018, 728: 88
[4] Deng Y L, Wang Y F, Lin H Q, et al. Effect of extrusion temperature on strength and fracture toughness of an Al-Zn-Mg Alloy [J]. Chin. J. Mater. Res., 2016, 30(2): 87
[4] (邓运来, 王亚风, 林化强等. 挤压温度对 Al-Zn-Mg 合金力学性能的影响 [J]. 材料研究学报, 2016, 30(2): 87)
[5] Liu C Y, Qu B, Xue P, et al. Fabrication of large-bulk ultrafine grained 6061 aluminum alloy by rolling and low-heat-input friction stir welding [J]. Mater. J. Sci. Technol., 2018, 34(1): 112
[6] Xiao W C, Wang B Y, Kang Y, et al. Deep drawing of aluminum alloy 7075 using hot stamping [J]. Rare. Met., 2017, 36(6): 485
[7] Afifi M A, Pereira P H R, Wang Y C, et al. Effect of ECAP processing on microstructure evolution and dynamic compressive behavior at different temperatures in an Al-Zn-Mg alloy [J]. Mater. Sci. Eng., A, 2017, 684: 617
[8] Huang Y, Deng Y L, Chen L, et al. Microstructure, texture and property of extruded 7N01 aluminum alloy plates [J]. Chin. J. Mater. Res., 2014, 28(7): 541
[8] (黄 英, 邓运来, 陈 龙等. 7N01 铝合金挤压板的微结构, 织构和性能 [J]. 材料研究学报, 2014, 28(7): 541)
[9] Li D, Zhang D, Liu S, et al. Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation [J]. Trans. Nonferrous Met. Soc. China., 2016, 26(6): 1491
[10] Dong Y, Zhang C, Zhao G, et al. Constitutive equation and processing maps of an Al-Mg-Si aluminum alloy: Determination and application in simulating extrusion process of complex profiles [J]. Mater. Des., 2016, 92: 983
[11] Teng G B, Liu C Y, Li J, et al. Effect of Sc on microstructure and mechanical property of 7055Al-alloy [J]. Chin. J. Mater. Res., 2018, 32(2): 112
[11] (滕广标, 刘崇宇, 李 剑. 添加Sc对7055铝合金微观结构和力学性能的影响 [J]. 材料研究学报, 2018, 32(2): 112)
[12] Cheng T C, Lee R S. The influence of grain size and strain rate effects on formability of aluminium alloy sheet at high-speed forming [J]. J. Mater. Process. Technol., 2018, 253: 134
[13] Huang L, Luo W Y, Liu X L, et al. Research on plastic flow behaviors for hole flanging part of aluminum alloy with large complicated profiles by electromagnetic forming [J]. J. Mater. Eng., 2013, 49(24): 24
[13] (黄 亮, 骆文勇, 刘贤龙等. 大型复杂型面铝合金翻边件电磁成形塑性流动行为研究 [J]. 机械工程学报, 2013, 49(24): 24)
[14] Thi-Hoa P, Thi-Bich M, Van-Canh T, et al. A study on the cutting force and chip shrinkage coefficient in high-speed milling of A6061 aluminum alloy [J]. Int. Adv. J. Manuf. Tech., 2017: 1
[15] Olasumboye A T, Owolabi G M, Odeshi A G, et al. Dynamic behavior of AA2519-T8 aluminum alloy under high strain rate loading in compression [J]. Dyn. J. Behav. Mater., 2018, 4(2): 151
[16] Xiao G, Li L Y, Liu Z W, et al. Hot deformation behavior and processing map of 6013 aluminum alloy [J]. Trans. Mater. Heat. Treat., 2014, (10): 23
[16] (肖 罡, 李落星, 刘志文等. 6013铝合金的热变形行为及热加工图 [J]. 材料热处理学报, 2014, (10): 23)
[17] Xiao G, Yang Q, Li L, et al. Constitutive analysis of 6013 aluminum alloy in hot plane strain compression process considering deformation heating integrated with heat transfer [J]. Met. Mater. Int., 2016, 22(1): 58
[18] Zhao Y, Zhou L, Wang Q, et al. Defects and tensile properties of 6013 aluminum alloy T-joints by friction stir welding [J]. Mater. Des., 2014, 57: 146
[19] Hirth G, Kohlstedt D L. The stress dependence of olivine creep rate: Implications for extrapolation of lab data and interpretation of recrystallized grain size [J]. Earth. Planet. Sci. Lett., 2015, 418: 20
[20] Chen J Z, Zhen L, Dai S L, et al. Effects of grain shape and texture on the through-thickness yield strength of AA 7055 aluminum alloy plate [J]. Rare. Met. Mater. Eng., 2008, 37(11): 1966
[20] (陈军洲, 甄 良, 戴圣龙等. 晶粒形貌及织构对 AA7055 铝合金板材不同厚度层屈服强度的影响 [J]. 稀有金属材料与工程, 2008, 37(11): 1966)
[21] Li H, Jiang Z, Wei D, et al. Surface asperity evolution and microstructure analysis of Al 6061T5 alloy in a quasi-static cold uniaxial planar compression (CUPC) [J]. Appl. Surf. Sci., 2015, 347: 19
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!