Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (11): 837-847    DOI: 10.11901/1005.3093.2019.136
ARTICLES Current Issue | Archive | Adv Search |
Effect of Allotropic Transformation on Plasticity of Fe-15Mn-10Al-0.3C Dual Phase Steel during Annealing
LIU Yingkai1,2,WANG Baibing1,2,LIU Rendong3,GUO Jinyu3,SHI Wen1,2()
1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2. State Key Laboratory of Advanced Special Steel, Shanghai 200444, China
3. Technology Center of Ansteel Institute, Anshan 114009, China
Cite this article: 

LIU Yingkai,WANG Baibing,LIU Rendong,GUO Jinyu,SHI Wen. Effect of Allotropic Transformation on Plasticity of Fe-15Mn-10Al-0.3C Dual Phase Steel during Annealing. Chinese Journal of Materials Research, 2019, 33(11): 837-847.

Download:  HTML  PDF(11124KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The evolution of microstructure and properties of Fe-15Mn-10Al-0.3C steel during static annealing after different cold rolling treatments was investigated. The microstructure and properties of the test steel were characterized by means of SEM, XRD and EBSD. The results show that during the annealing process, the austenite bands undergo obvious allotropic transformation, whilst γ-phase transforms to α-phase and the amount of transformation increases with annealing time. The isomeric transformation affects the tensile deformation behavior of the annealed steel, the orientation relationship between the α-phase and the γ-phase changed from the neighbor relationship to the K-S with the prolongation of annealing time, which is beneficial to dislocation sliding across phase boundary and improves plasticity. When the annealing time is long enough, the K-S relationship between the two phases loses coherent and the plasticity is reduced. The transformation can regulate the parallelism of the slip system between the α-ferrite and the γ-austenite, which can improve the plasticity of Fe-Mn-Al-C steel.

Key words:  metallic materials      allotropic transformation      double cold rolling      orientation relationship      dislocation glide     
Received:  01 March 2019     
ZTFLH:  TG142.1+4  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.136     OR     https://www.cjmr.org/EN/Y2019/V33/I11/837

ElementCMnAlFe
Weight percent /%0.2814.809.50Bal
Table 1  Chemical composition of Fe-15Mn-10Al-0.3C experimental steel (mass fraction)
Fig.1  Phase fraction in the test alloy as a function of temperature predicted by Thermo-calc software
Fig.2  Schematic illustration of the rolling and annealing condition of Fe-15Mn-10Al-0.3C steel
Fig.3  OM and SEM images of the 1030℃ isothermal for 1 h (a,b) and OM images (c, d) of the SCRS and DCRS respectively
Fig.4  Selected SEM images of the SCRS annealed at 900℃ for 1 s (a), 5 s (b), 10 s (c), 2 min (d), 10 min (e) and 1 h (f)
Fig.5  SCRS annealed at 900℃angular distribution of grain boundary (a), phase diagram (b) and IPF (c) for 1 s respectively; angular distribution of grain boundary (d), phase diagram (e) and IPF (f) for 10 s
Fig.6  Selected SEM images of the DCRS annealed at 900℃ for 5 s (a), 10 s (b), 2 min (c), 10 min (d), and 1 h (e)
Fig.7  X-ray diffraction results (a) SCRS and annealed samples; (b) DCRS and annealed samples; and Statistical map of allotropic transformation (c) Annealed after SCRS; (d) Annealed after DCRS
Fig.8  Tensile properties of selected samples quenched at 900℃ (a) Annealed after SCRS; (b) Annealed after DCRS; (c) and (d) are the work hardening rate figures of annealed specimens after single and double cold rolling
Test steelYS/MPaUTS/MPaE/%Formability factor/GPa%Yield ration
Annealed after SCRS10 s711.1288711.310.020.8020.13
2 min652.9382019.515.990.7960.15
1 h627.667497.65.690.8370.128
Annealed after DCRS1 0s575.8372917.512.760.7890.15
2 min572.2974023.717.540.7730.156
1 h509.186751912.830.7540.16
Table 2  Room temperature tensile properties of the alloy as annealed conditions
Fig.9  Austenite phase volume fraction (a) average grain size, (b) of selected samples quenched at 900℃
Fig.10  Average dislocation density increment in tensile direction of annealed specimens (a) annealed after SCRS; (b) annealed after DCRS
Fig.11  Grain orientation change of α-ferrite of annealed samples for 1 s (a) and 1 min (b) of SCRS and for 2 min (c) and 1 h (d) of DCRS
Position

Euler angles

(φ1φφ2)

Position

Euler angles

(φ1φφ2)

1(305.8°46.8°25.2°)7(66.1°43.9°55.2°)
2(305.4°47.0°25.7°)8(114.6°38.2°85.4°)
3(305.6°47.3°25.9°)9(81.0°35.0°80.6°)
4(336.1°35.9°87.2°)10(56.7°43.3°9.7°)
5(183.1°17.0 50.4°)11(206.1°39.7°20.1°)
6(183.1°16.5°51.2°)12(62.7°42.0°54.1°)
Table 3  Euler angles of α phase and γ phase at different selected locations of annealed samples
Fig.12  Degree of deviation from K-S between γ and α in annealed samples (a) and (b) are the Schematic diagram of angular distribution deviating from K-S relationship of 1 s for SCRS and 2 min for DCRS; (c) and (d) are the proportion diagrams of different ferrite slip system parallel to austenite slip system during different annealing time after SCRS and DCRS respectively; (e) and (f) are the proportion diagrams of all ferrite slip system parallel to austenite slip system during different annealing time after SCRS and DCRS
Fig.13  SEM images of microcracks at fracture of tensile samples (a) 10 s, (b) 2 min and (c) 1 h of SCRS respectively; (d) 10 s, (e) 2 min and (f) 1 h of DCRS
[1] Chen S, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels[J]. Prog. Mater. Sci., 2017, 89: 345
[2] Park K T, Jin K G, Han S H, et al. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition[J]. Mater. Sci. Eng. A, 2010, 527(16): 3651
[3] Frommeyer G, Brüx Udo. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels [J]. Steel Res Int, 2006, 77(9-10): 627
[4] Curtze S, Kuokkala V T, Oikari A, et al. Thermodynamic modeling of the stacking fault energy of austenitic steels [J]. Acta Mater., 2011, 59(3): 1068
[5] Sohn S S, Lee B J, Lee S, et al. Effect of annealing temperature on microstructural modification and tensile properties in 0.35 C-3.5 Mn-5.8 Al lightweight steel [J]. Acta Mater., 2013, 61(13): 5050
[6] Sohn S S, Lee S, Lee B J, et al. Microstructural developments and tensile properties of lean Fe-Mn-Al-C lightweight steels [J]. JOM, 2014, 66(9): 1857
[7] Yanushkevich Z, Belyakov A, Kaibyshev R, et al. Effect of large plastic deformation on microstructure and mechanical properties of a TWIP steel [J]. IOP Conference Series: Materials Science and Engineering, 2014, 63: 012064
[8] de las Cuevas F., Reis M, Ferraiuolo A, et al. Kinetics of recrystallization and grain growth of cold rolled TWIP steel [J]. Adv. Mater. Res., 2010, 89-91: 6
[9] Wang Z W, Hu P, Shi B L, et al. Effect of cold deformation and recrystallization annealing on grain size of TP304 steel [J]. Heat Treatment of Metals, 2010, 35(3): 17
[9] (王志武, 胡 平, 石宝良等. 冷变形和再结晶退火对TP304钢晶粒度的影响 [J]. 金属热处理, 2010, 35(3): 17)
[10] Behjati P, Kermanpur A, Karjalainen L P, et al. Influence of prior cold rolling reduction on microstructure and mechanical properties of a reversion annealed high-Mn austenitic steel [J]. Mater. Sci. Eng. A, 2016, 650(2): 119
[11] Hu Q Q, Xia P K, Yu P F, et al. Effect of cooling rate on microstructure and mechanical properties of light Fe-Mn-Al steel [J]. Shanghai Metal, 2017, 39(3): 24
[11] (胡钱钱, 夏培康, 余鹏飞等. 冷却速率对轻质Fe-Mn-Al钢组织及力学性能的影响 [J]. 上海金属, 2017, 39(3): 24)
[12] Cai Z H, Li H Y, Jing S Y, et al. Influence of annealing temperature on microstructure and tensile property of cold-rolled Fe-0.2C-11Mn-6Al steel [J]. Mater. Charact., 2018, 137
[13] Karimi Y, Hossein Nedjad S, Miyamoto G, et al. Banding effects on the process of grain refinement by cold deformation and recrystallization of acicular C-Mn steel [J]. Mater. Sci. Eng. A, 2017, 697: 1
[14] Zhou P, Liang Z Y, Liu R D, et al. Evolution of dislocations and twins in a strong and ductile nanotwinned steel [J]. Acta Mater., 2016, 111: 96
[15] Shi J, Sun X, Wang M, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite [J]. Scr. Mater., 2010, 63(8): 815
[16] Li Z C, Ding H, Misra R D K, et al. Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments [J]. Mater. Sci. Eng. A, 2017, 682: 211
[17] Cai Z H, Ding H, Misra R D K, et al. Mechanistic contribution of the interplay between microstructure and plastic deformation in hot-rolled Fe-11Mn-2/4Al-0.2C steel [J]. Mater. Sci. Eng. A, 2016, 652: 205
[18] Yang F Q, Song R B, Li Y P, et al. Effect of annealing temperature on properties of cold rolled Fe-Mn-Al-C low density steel [J]. Chin. J. Mater. Res., 2015, 29(2): 108
[18] (杨富强, 宋仁伯, 李亚萍等. 退火温度对冷轧Fe-Mn-Al-C低密度钢性能的影响 [J]. 材料研究学报, 2015, 29(2): 108)
[19] Sun G S, Du L X, Hu J, et al. Microstructural evolution and recrystallization behavior of cold rolled austenitic stainless steel with dual phase microstructure during isothermal annealing [J]. Mater. Sci. Eng. A, 2018, 709: 254
[20] Zhang J L, Raabe D, Tasan C C. Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics [J]. Acta Mater., 2017, 141: 374
[21] Guo E Y, Wang M Y, Jing T, et al. Temperature-dependent mechanical properties of an austenitic–ferritic stainless steel studied by in situ tensile loading in a scanning electron microscope (SEM) [J]. Mater. Sci. Eng. A, 2013, 580(10): 159
[22] Serre I, Salazar D, Vogt J B. Atomic force microscopy investigation of surface relief in individual phases of deformed duplex stainless steel [J]. Mater. Sci. Eng. A, 2008, 492(1): 428
[23] Guo E Y, Xie H X, Singh S S, et al. Mechanical characterization of microconstituents in a cast duplex stainless steel by micropillar compression [J]. Mater. Sci. Eng. A, 2014, 598: 98
[24] Taisne A, Décamps, B, Priester L. Role of interfaces in duplex stainless steel deformation micromechanisms [J]. Compos. Interfaces, 2006, 13(1): 89
[25] Fréchard S, Martin F, Clément Ch, et al. AFM and EBSD combined studies of plastic deformation in a duplex stainless steel [J]. Mater. Sci. Eng. A, 2006, 418(1-2): 312
[26] Zhang J. Phase field simulation of Austenite-ferrite transformation in Fe-C-Mn ternary alloy [D]. Hefei: University of Science and Technology of China, 2017
[26] (张 军. Fe-C-Mn三元合金中奥氏体-铁素体相变的相场模拟 [D]. 合肥: 中国科学技术大学, 2017)
[27] Bugat S, Besson J, Gourgues A F, et al. Microstructure and damage initiation in duplex stainless steels [J]. Mater. Sci. Eng. A-Struct. Mater., 2001, 317(1-2): 32
[28] Cheng W C, Chih-Yao Cheng, Hsu Chia-Wei, et al. Phase transformations of an Fe-0.85C-17.9Mn-7.1Al austenitic steel after quenching and annealing [J]. JOM, 2014, 66(9): 1809
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!