Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (11): 831-836    DOI: 10.11901/1005.3093.2019.289
ARTICLES Current Issue | Archive | Adv Search |
Anionic Synthesis and Dynamic Mechanical Poperties of Styrene/Isoprene Copolymers with Gradient Blocks
LIAO Mingyi(),XU Xiaochuan
Department of Materials Science and Engineering, College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China
Cite this article: 

LIAO Mingyi,XU Xiaochuan. Anionic Synthesis and Dynamic Mechanical Poperties of Styrene/Isoprene Copolymers with Gradient Blocks. Chinese Journal of Materials Research, 2019, 33(11): 831-836.

Download:  HTML  PDF(1671KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The styrene (St)/isoprene (Ip) copolymers (S/I) with gradient blocks were synthesized by a one-step anionic polymerization technique with cyclohexane as solvent, n-butyl lithium (n-BuLi) as initiator and tetrahydrofuran (THF) as polar structure regulator. The microstructures and dynamic mechanical properties of synthesized S/I copolymers were characterized by 1H-NMR and dynamic mechanic analysis (DMA), respectively. The effect of the time of THF addition and St content on the microstructure and the properties of S/I copolymers were investigated. The results show that the time of THF addition had a great effect on the microstructure, mechanical and dynamic properties of S/I copolymers, and the proper time of THF addition may be beneficial to modulate the copolymerization activity of St and Ip, and further modulate the microstructure and composition of the copolymers, therefore, S/I copolymers with gradient blocks could finally form, which possess broadened glass transition region and damping range. The evolution of structure and the properties of S/I copolymers were also analyzed theoretically.

Key words:  organic polymer materials      styrene/isoprene copolymers      anionic polymerization      synthesis      gradient block structure      dynamic mechanical properties     
Received:  05 June 2019     
ZTFLH:  TQ333.99  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.289     OR     https://www.cjmr.org/EN/Y2019/V33/I11/831

Fig.1  1H-NMR spectra of S/I copolymer
abcd
Chemical Shift (ppm)7.40~7.106.50~6.755.20~4.814.81~4.40
Assignment-CH- of benzene ring in random S/I copylymer-CH- of benzene ring in block S/I copylymer=CH- of 1,4-units and =CH2 of 1,2-units=CH2 of 3,4-units and
Table 1  Assignment of the peaks in the 1H-NMR spectra of S/I copolymer
Sample No.123456789
S/I25/7525/7525/7525/7525/7525/7525/7525/7525/75
THF addition time/min57891012152030
St contents24.524.424.126.425.725.924.626.327.0
St block contents2.02.63.05.35.79.511.614.014.0
1,2-Ip contents0.60.10.30.70.60.00.00.00.0
1,4-Ip contents82.384.386.586.286.390.791.490.390.8
3,4-Ip contents17.115.613.213.113.19.38.89.09.0
Table 2  Effect of the modifier addition time on the microstructure contents (mass fraction, %) of S/I copolymers
Sample No.1011112513
S/I30/7025/7520/8030/7025/7520/80
THF addition time/min555101010
St contents27.824.519.530.025.718.6
St block contents1.72.01.83.35.76.1
1,2-Ip contents0.70.60.00.70.60.0
1,4-Ip contents82.382.386.380.086.390.8
3,4-Ip contents17.017.113.719.313.19.2
Table 3  Effect of the St content on the microstructure contents (mass fraction/%) of S/I copolymers
Sample No.123456789
Shore hardness747678828887888686
Tensile strength/MPa18.117.817.717.417.017.116.216.116.2
Tear strength/N·mm-1323233383638363837
Elongation at break/%406401360341348342276264270
Table 4  Effect of the modifier addition time on the mechanical properties of S/I copolymers
Fig.2  Effect of the modifier addition times on dynamic mechanical properties of S/I copolymers
Fig.3  Effect of the modifier addition times on dynamic mechanical properties of S/I copolymers
Sample No.1011112513
Shore hardness727468828880
Tensile strength/MPa19.418.115.817.317.015.7
Tear strength/N·mm-1343233343636
Elongation at break/%454406377363358345
tanδmax0.470.570.870.500.440.62
Table 5  Effect of St content on the mechanical and dynamic properties of S/I copolymers
Fig.4  Effect of St content on dynamic mechanical properties of S/I copolymers (a) modifier addition time at 5 min; (b) modifier addition time at 10 min
Fig.5  Scheme of S/I chain structure
[1] Pu W J, Li X D, Wang Q H. Relationship between acoustical absorptivity and viscoelasticity of acoustical absorptive polymer [J]. Polm. Mater. Sci. Eng., 2011, 27(12): 86
[1] (浦文婧, 李效东, 王清华. 高分子吸声材料吸声性能与粘弹性之间的关系 [J]. 高分子材料科学与工程, 2011, 27(12): 86)
[2] Xu X C, Liao M Y, Wang N N, et al. Synthesis of random solution-polymerized styrene-isoprene rubber and its damping property [J]. China Synth. Rub. Indus., 2016, 39(2): 93
[2] (徐晓川, 廖明义, 王妮妮等. 无规溶聚戊苯橡胶的合成及其阻尼性能 [J]. 合成橡胶工业, 2016, 39(2): 93)
[3] Zang C, Pal K, Byeon J U, et al. A study on mechanical and thermal properties of silicone rubber/EPDM damping materials [J]. J. Appl. Polym. Sci., 2011, 119: 2737
[4] Lu X, Li X J, Tian M. Preparation of high damping elastomer with broad temperature and frequency ranges based on ternary rubber blends [J]. Polym. Adv. Technol., 2014, 25: 21
[5] Hu R, Dimonie V L, El-Aasser M S, et al. Multicomponent latex IPN materials: 2. Damping and mechanical behavior [J]. J. Appl. Polym. Sci., 1997, 35B: 1501
[6] Pakula T, Matyjaszewski K. Copolymers with controlled distribution of comonomers along the chain, 1. Structure, thermodynamics and dynamic properties of gradient copolymers. Computer simulation [J]. Macromol. Theory Simul., 1996, 5: 987
[7] Hashimoto T, Tsukahara Y, Tachi K, et al. Structure and properties of tapered block polymers. 4. "Domain-boundary mixing" and "mixing-in-domain" effects on microdomain morphology and linear dynamic mechanical response [J]. Macromolecules, 1983, 16: 648
[8] Gronski W, Annighofer F, Stadler R. Structure and properties of phase boundaries in block copolymers [J]. Makromol. Chem., 1984, 6: 141
[9] Jouenne S, González-León J A, Ruzette A V, et al. Styrene/butadiene gradient block copolymers: molecular and mesoscopic structures [J]. Macromolecules, 2007, 402432
[10] Liao M Y, Xu X C. Synthesis of styrene/butadiene tapered block copolymer and its dynamic mechanical properties [J]. China Rub. Plast. Tech. Equip. (Plastics), 2015, 41(24): 8
[10] (廖明义, 徐晓川. 苯乙烯/丁二烯渐变嵌段共聚物的合成及其动态力学性能的研究[J]. 橡塑技术与装备(塑料), 2015, 41(24): 8)
[11] Liao M Y, Wang Q F, Wang N N, et al. Preparation and dynamic mechanical properties of copolymers based on butadiene, isoprene, and styrene [J]. Polym. Sci. Ser., 2014, 56B: 753
[12] Wang N N, Wang Q F, Liao M Y, al el. The application of structure modifiers in synthesis of diene rubber [J]. China Elast., 2006, 16(2): 51
[12] (王妮妮, 王启飞, 廖明义等. 二烯类橡胶合成反应中的结构调节剂 [J]. 弹性体, 2006, 16(2): 51)
[13] Young R N, Quirk R P, Fetters L J, et al. Anionic polymerizations of non-polar monomers involving lithium [A]. Anionic Polymerization [C]. Berlin: Springer, 1984, 56: 1
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] ZHOU Haitao, HOU Xiangwu, WANG Yanbo, XIAO Lv, YUAN Yong, SUN Jingli. High-temperature Deformation Behavior and Properties of High Nb Containing TiAl Alloy[J]. 材料研究学报, 2022, 36(6): 471-480.
[5] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] ZHAO Wanli, SUO Hongli, LIU Min, MA Lin, DAI Yinming, ZHANG Zili. Research Progress in Preparation of MgB2 Bulk by Diffusion Method[J]. 材料研究学报, 2021, 35(6): 411-418.
[10] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[15] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
No Suggested Reading articles found!