Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (11): 848-856    DOI: 10.11901/1005.3093.2019.157
ARTICLES Current Issue | Archive | Adv Search |
Effect of Nitrogen on Microstructure and Mechanical Properties for Simulated CGHAZ of Normalized Vanadium Micro-alloyed Steel
CHAI Feng1(),SHI Zhongran1,YANG Caifu1,WANG Jiaji2
1. Division of Structurale Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2. State Key Laboratory of Metal Material for Marine Equipment and Application,Anshan 114009,China
Cite this article: 

CHAI Feng,SHI Zhongran,YANG Caifu,WANG Jiaji. Effect of Nitrogen on Microstructure and Mechanical Properties for Simulated CGHAZ of Normalized Vanadium Micro-alloyed Steel. Chinese Journal of Materials Research, 2019, 33(11): 848-856.

Download:  HTML  PDF(11942KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of N-content on the microstructure and mechanical properties for the simulated coarse-grain heat-affected zone (CGHAZ) of normalized vanadium micro-alloyed steel was investigated by thermal simulation method. The results show that N-content has significant effect on the low-temperature toughness, precipitates, impact fracture morphology and the ultimate microstructure. The steel containing 0.0031% N or 0.021% N has poor CGHAZ toughness. The steel with 0.012% N has optimal CGHAZ toughness. There is slight Ti-enriched carbonitride and grain boundary ferrite in the steel of 0.0031% N, the large-sized ferrite side-plate in the major microstructure can be as the channel of crack resulting the poor CGHAZ toughness. CGHAZ of 0.021% N contains coarse (Ti, V)CN and coarse grain boundary ferrite, the crack can extend along the coarse grain boundary ferrite resulting in poor toughness. CGHAZ of 0.012% N contains thin (Ti, V)CN, the fine grain boundary ferrite and abundant acicular ferrite, which can act as an obstacle to the crack extension, resulting in preferable CGHAZ toughness.

Key words:  metallic materials      vanadium microalloying      nitrogen content      normalized steel      simulated CGHAZ     
Received:  18 March 2019     
ZTFLH:  TG406  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.157     OR     https://www.cjmr.org/EN/Y2019/V33/I11/848

SteelsCMnSiSPTiNAlV
31N0.161.560.350.0030.0060.0150.00310.0120.060
82N0.161.580.330.0030.0060.0150.00820.0150.062
120N0.161.530.360.0030.0060.0150.01200.0140.060
210N0.161.550.350.0030.0060.0160.02100.0130.059
Table 1  Chemical composition of the tested steel (mass fraction, %)
Fig.1  Impact test result of CGHAZ at different temperature
Fig.2  CGHAZ microstructures of different nitrogen content experimental steels
Fig.3  Orientation distribution of CGHAZ in different nitrogen content experimental steels
Fig.4  Distribution of boundary misorintation angles in different nitrogen content experimental steels (a) 30N steel (b) 82N steel (c) 120N steel (d) 210N steel
Fig.5  EBSD mean effective size of the tolerance angle 15o
Fig.6  TEM analysis micrographs of precipitations in simulated CGHAZ (a) 30N steel (b) 82N steel (c) 120N steel (d) 210N steel
SteelsTyped / nmVolume fraction/%V/(V+Ti)/%
31NTi(C,N)51.6±24.10.00721.4
82N(Ti ,V)(C,N)28.2±10.30.02222.7
120N(Ti,V)(C,N)28.1±9.70.11430.4
210N(Ti,V)(C,N)33.9±9.00.12444.7
Table 2  Results of the precipitations quantification
Fig.7  Effect of nitrogen on the particles of steels (a) 30N steel (b) 82N steel (c) 120N steel (d) 210N steel
Fig.8  Beginning temperature of (V, Ti)(C, N) under equilibrium state
Fig.9  OM and SEM micrographs showing impact fracture surface morphologies (a) 30N steel (b) 120N steel
Fig.10  EBSD micrographs showing impact fracture surface morphologies
[1] Yang C F, Zhang Y Q, Wang R Z. The Principle and Application of Vanadium Steel [M]. Beijing: Metallurgy Industry Press, 2012
[1] (杨才福, 张永权, 王瑞珍. 钒钢冶金原理与应用 [M]. 北京: 冶金工业出版社, 2012)
[2] Hu J, Du L X, Xie H, et al. Microstructure and mechanical properties of TMCP heavy plate microalloyed steel [J]. Materials Science and Engineering: A, 2014, 607: 122
[3] Chai F, Yang C F, Su H, et al. Strength and toughness mechanism of high strength V-N micro-alloyed bulb-flat steel [J]. Journal of Iron and Steel Research, 2012, 24(2): 39
[3] (柴 锋, 杨才福, 苏 航等. 钒氮微合金化高强度球扁钢的强韧化机制 [J]. 钢铁研究学报, 2012, 24(2): 39)
[4] Su H, Chai X Y, Pan T, et al. Precipitation behavior of V N micro-alloyed steel at the normalizing press [J]. Chinese Journal of Engineering, 2015, 37(10): 1325
[4] (苏 航, 柴希阳, 潘 涛等. 正火过程中 V-N 微合金化钢的第二相行为 [J]. 工程科学学报, 2015, 37(10): 1325)
[5] Su H, Chai X Y, Pan T, et al. Effect of nitrogen content microstructure and strength effect in normalized V-N microalloyed steel [J]. Iron and Steel, 2014, 49(6): 85
[5] (苏 航, 柴希阳, 潘 涛等. 氮含量对正火型钒微合金化钢强化效果和显微组织的影响 [J]. 钢铁, 2014, 49(6): 85)
[6] Hannerz N E. Weld metal and HAZ toughness and hydrogen cracking susceptibility of HSLA steels as influenced by Nb, Al, V, Ti and N [J]. Welding of HSLA (Microalloyed) Structural Steels, 1976: 365
[7] Hamada M, Fukada Y, Komizo Y. Microstructure and precipitation behavior in heat affected zone of C-Mn microalloyed steel containing Nb, V and Ti [J]. The Iron and Steel Institute of Japan international, 1995, 35(10): 1196
[8] Shi Z, Yang C, Wang R, et al. Effect of nitrogen on the microstructures and mechanical properties in simulated CGHAZ of vanadium microalloyed steel varied with different heat inputs [J]. Materials Science and Engineering: A, 2016, 649: 270
[9] Zajac S, Siwecki T, Svensson L E. Influence of plate production pressing route, heat input and nitrogen on the HAZ toughness in Ti-V microalloyed steel [J]. 1992
[10] Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel [J]. Acta Materialia, 2004, 52(8): 2337
[11] Guo A, Misra R D K, Liu J, et al. An analysis of the microstructure of the heat-affected zone of an ultra-low carbon and niobium-bearing acicular ferrite steel using EBSD and its relationship to mechanical properties [J]. Materials Science and Engineering: A, 2010, 527(23): 6440
[12] Gregg J M, Bhadeshia H. Solid-state nucleation of acicular ferrite on minerals added to molten steel [J]. Acta Materialia, 1997, 45(2): 739
[13] Ishikawa F, Takahashi T, Chi T. Intragranular ferrite nucleation in medium-carbon vanadium steels [J]. Metallurgical and Materials Transactions A, 1994, 25(5): 929
[14] Fang F, Yong Q L, Yang C F, et al. Microstructure and precipitation behavior in HAZ of V and Ti microalloyed steel [J]. Journal of Iron and Steel Research, International, 2009, 16(3): 68
[15] Hu J, Du L X, Wang J J. Effect of V on intragranular ferrite nucleation of high Ti bearing steel [J]. Scripta Materialia, 2013, 68(12): 953
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!