Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (1): 9-14    DOI: 10.11901/1005.3093.2017.799
ARTICLES Current Issue | Archive | Adv Search |
Plasma-enhanced Atomic Layer Deposition of TaN Film and Its Resistance to Copper Diffusion
Yongping WANG,Zijun DING,Bao ZHU,Wenjun LIU,Shijin DING()
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
Cite this article: 

Yongping WANG,Zijun DING,Bao ZHU,Wenjun LIU,Shijin DING. Plasma-enhanced Atomic Layer Deposition of TaN Film and Its Resistance to Copper Diffusion. Chinese Journal of Materials Research, 2019, 33(1): 9-14.

Download:  HTML  PDF(2217KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TaN films were deposited on monocrystalline silicon wafer via plasma enhanced atomic layer deposition with Ta[N(CH3)2]5 as precursor and NH3 plasma as coreactant. The as deposited films were characterized by means of atomic force microscopy, X-ray photoelectron spectroscopy, four-point probe and X-ray reflection. The results show that the as-deposited film consists mainly of TaN with small quantities of C and O. As the deposition temperature increases from 250oC to 325oC, the ratio of Ta/N increases from 46:41 to 55:35, and the C-content (atomic fraction) decreases from 6% to 2%. Meanwhile, the resistivity of the film gradually decreases from 0.18 Ω?cm to 0.044 Ω?cm, and the film density increases from 10.9 g/cm3 to 11.6 g/cm3. After annealing at 400oC for 30 min, the film density shows an increment of ~0.28 g/cm3 on average, and the film resistivity decreases to 0.12-0.029 Ω?cm. Further, the barrier performance test results indicate that the TaN film of 3 nm in thickness deposited at 250oC demonstrates a perfect barrier function after annealing at 500oC for 30 min.

Key words:  surface and interface in the materials      atomic layer deposition      diffusion barrier      annealing      TaN films     
Received:  11 January 2018     
ZTFLH:  TN304  
Fund: National Key Technologies R & D Program of China(2015ZX02102-003)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.799     OR     https://www.cjmr.org/EN/Y2019/V33/I1/9

Fig.1  Growth rate of the TaN films as a function of substrate temperature
Fig.2  Dependence of the growth rate of the TaN film on the NH3 plasma pulse time and the NH3 flow rate, respectively
Fig.3  Dependence of thickness on the deposition cycles
Fig.4  Evolution of the XPS survey spectrum of the TaN film as a function of Ar ion etching time
Etching timeN 1s/%Ta 4f/%O 1s/%C 1s/%
0 min19182142
3 min39401110
6 min414586
9 min414676
Table1  Evolution of the elemental atomic fraction of the TaN film as a function of Ar ion etching time

Substrate

temperature

N 1s/%Ta 4f/%O 1s/%C 1s/%
250℃414676
275℃404785
300℃375283
325℃355582
  
Fig.5  high-resolution XPS spectra of Ta 4f (a) and C 1s (b) of the films deposited at different
Fig.6  Surface morphology of the ALD TaN films (~2 nm) deposited at different temperature
Fig.7  Resistivity and density of the as-deposited film (a) and the film annealed at 400℃ (b)
Fig.8  Breakdown filed and the representative I-V curves of the as-fabricated and post annealed MOS devices
1 KuoY L, LeeC, LinJ C, et al. Characteristics of DC reactively sputtered (Ti, Zr)N thin films as diffusion barriers for Cu metallization [J]. Electrochem. Solid St., 2003, 6(9): 123
2 KwonJ D, YunJ, KangS W. Comparison of tantalum nitride films for different NH3 /H2 /Ar reactant states in two-step atomic layer deposition [J]. Jpn. J. Appl. Phys., 2009, 48(2): 1
3 JourdanN, BarbarinY, CroesK, et al. Plasma enhanced chemical vapor deposition of manganese on low-k dielectrics for copper diffusion barrier application [J]. ECS Solid State Lett., 2013, 2(3): 25
4 Semiconductor Industry Association. The International Technology Roadmap for Semiconductors 2.0: Interconnect [EB/OL].
5 SomaniS, MukhopadhyayA, MusgraveC. Atomic layer deposition of tantalum nitride using a novel precursor [J].J. Phys. Chem. C, 2011, 115(23): 11507
6 TsaiM H, SunS C, LeeC P, et al. Metal-organic chemical vapor deposition of tantalum nitride barrier layers for ULSI applications [J]. Thin Solid Films, 1995, 270(1):531
7 OhshitaY, OguraA, HoshinoA, et al. Low-pressure chemical vapor deposition of TaCN films by pyrolysis of ethylamido-tantalum [J].J. Cryst. Growth, 2000, 220(4): 604
8 TsaiM H, SunS C, ChiuH T, et al. Metalorganic chemical vapor deposition of tantalum nitride by tertbutylimidotris(diethylamido) tantalum for advanced metallization [J]. Appl. Phys. Lett., 1995, 67(8): 1128
9 TsaiM H, SunS C, TsaiC E, et al. Comparison of the diffusion barrier properties of chemical-vapor-deposited TaN and sputtered TaN between Cu and Si [J].J. Appl. Phys., 1996, 79(9): 6932
10 AlenP, JuppoM, RitalaM, et al. Atomic layer deposition of Ta(Al)N(C) thin films using trimethylaluminum as a reducing agent [J].J. Electrochem. Soc., 2001, 148(10): 566
11 KimH, LavoieC, CopelM, et al. The physical properties of cubic plasma-enhanced atomic layer deposition TaN film [J].J. Appl. Phys., 2004, 95(10): 5848
12 StrehleS, SchumacherH, SchmidtD, et al. Effect of wet chemical substrate pretreatment on the growth behavior of Ta(N) films deposited by thermal ALD [J]. Microelectron. Eng., 2008, 85(10): 2064
13 BurtonB B, LavoieA R, GeorgeS M. Tantalum nitride atomic layer deposition using (tert-butylimido) tris (diethylamido) tantalum and hydrazine [J].J. Electrochem. Soc., 2008, 155(7): 508
14 YanH, LiL, HoF Y, et al. Formation and characterization of magnetron sputtered Ta-Si-N-O thin films [J]. Thin Solid Films, 2009, 517(17): 5207
15 KimH, LavoieC, CopelM, et al. The physical properties of cubic plasma-enhanced atomic layer deposition TaN films [J].J. Appl. Phys., 2004, 95(10): 5848
16 KumarS, GreenslitD, ChakrabortyT, et al. Atomic layer deposition growth of a novel mixed-phase barrier for seedless copper electroplating applications [J].J. Vac. Sci. Technol. A, 2009, 27(27): 572
17 FangZ, AspinallH C, OdedraR, et al. Atomic layer deposition of TaN and Ta3N5 using pentakis(dimethylamino)tantalum and either ammonia or monomethylhydrazine [J].J. of Cryst. Growth, 2011, 331(1): 33
18 BaeN J, NaK I, ChoH I, et al. Thermal and electrical properties of 5-nm-thick TaN film prepared by atomic layer deposition using a pentakis(ethylmethylamino)tantalum precursor for copper metallization [J]. Jpn. J. Appl. Phys., 2006, 45(12): 907
19 ParkY J, LeeD R, BaikS. Synchrotron X-ray reflectivity for characterization of the initial ALD growth of TaN [J].J. Korean Phys. Soc., 2011, 59(2): 458
20 AnacletoA C, ZaunerA, CanianD C, et al. Atomic layer deposition of tantalum nitride based thin films from cyclopentadienyl type precursor [J]. Thin Solid Film, 2010, 519(1): 367
21 RushworthS A, SmithL M, KingsleyA J, et al. Vapour pressure measurement of low volatility precursors [J]. Microelectron. Reliab., 2005, 45(5-6): 1000
22 XieQ, MusschootJ, DetavernierC, et al. Diffusion barrier properties of TaNx films prepared by plasma enhanced atomic layer deposition from PDMAT with N2 or NH3 plasma [J]. Microelectron. Eng., 2008, 85(10): 2059
23 PuurunenR L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process [J].J. Appl. Phys., 2005, 97(12): 121301
24 GeorgeS M. Atomic Layer Deposition: An overview [J]. Chem. Rev., 2010, 110 (1): 111
25 BrizeV, PrieurT, VioletP, et al. Developments of TaN ALD process for 3D conformal coatings [J]. Chem. Vapor Depos., 2015, 17(10-12): 284
26 HaoL J, LaxmanR K, LanemanS A. HVM production and challenges of UHF PDMAT for ALD-TaN [J]. Solid State Technol., 2014, 57(4): 31
27 VioletP, NutaI, ChatillonC, et al. Cracking study of pentakis (dimethylamino) tantalum vapors by Knudsen cell mass spectrometry [J]. Rapid Commun. Mass Sp., 2010, 24(20): 2949
28 ZhangQ Y, MeiX X, YangD Z, et al. Preparation, structure and properties of TaN and TaC films obtained by ion beam assisted deposition [J]. Nucl. Instrum. Methods Phys. Res. B, 1997, 127(128): 664
29 ArranzA, PalacioC. Composition of tantalum nitride thin films grown by low-energy nitrogen implantation:a factor analysis study of the Ta 4f XPS core level [J]. Appl. Phys. A, 2005, 81(7): 1405
30 ArshiN, LuJ, JooY K, et al. Effects of nitrogen composition on the resistivity of reactively sputtered TaN thin films [J]. Surf. Interface Anal., 2015, 47(1): 154
31 VargasM, CastilloH A, ParraE R, et al. Stoichiometry behavior of TaN, TaCN and TaC thin films produced by magnetron sputtering [J]. Appl. Surf. Sci., 2013, 279(279): 7
32 PiallatF, BeuginV, GassilloudR, et al. Evaluation of plasma parameters on PEALD deposited TaCN [J]. Microelectron. Eng., 2013, 107(1): 156
33 LamourP, FiouxP, PoncheA, et al. Direct measurement of the nitrogen content by XPS in self-passivated TaNx thin films [J]. Surf. Interface Anal., 2010, 40(11): 1430
34 WangY P, DingZ J, LiuQ X, et al. Plasma-assisted atomic layer deposition and post-annealing enhancement of low resistivity and oxygen-free nickel nano-films using nickelocene and ammonia precursors [J].J. Mater. Chem. C, 2016, 4(47): 11059
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] WANG Wei, ZHOU Shanqi, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Kuaishe. Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates[J]. 材料研究学报, 2023, 37(1): 70-80.
[6] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[8] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[9] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[10] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[11] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[12] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[13] SUN Maolin, GONG Zhen, WANG Shiwen, YIN Hang, LI Ruiwu, ZHANG Zheng, LI Yutong, WU Fayu. Optical and Electrical Properties of Oxygen-controlled In2O3 Film[J]. 材料研究学报, 2021, 35(5): 394-400.
[14] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[15] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
No Suggested Reading articles found!