Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (5): 394-400    DOI: 10.11901/1005.3093.2020.250
ARTICLES Current Issue | Archive | Adv Search |
Optical and Electrical Properties of Oxygen-controlled In2O3 Film
SUN Maolin1, GONG Zhen1, WANG Shiwen2, YIN Hang1, LI Ruiwu1, ZHANG Zheng1, LI Yutong1, WU Fayu1()
1.School of Materials and Metallurgy, Liaoning University of Science and Technology, Anshan 114051, China
2.Quality Inspection and Measurement Center of Anshan Iron & Steel Co. Ltd. , Anshan 114000, China
Cite this article: 

SUN Maolin, GONG Zhen, WANG Shiwen, YIN Hang, LI Ruiwu, ZHANG Zheng, LI Yutong, WU Fayu. Optical and Electrical Properties of Oxygen-controlled In2O3 Film. Chinese Journal of Materials Research, 2021, 35(5): 394-400.

Download:  HTML  PDF(5771KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The difference of oxygen acting mechanisms between the as-deposited and as-annealed In2O3 films under the oxygen-controlled conditions was investigated by the microstructure as well as optical and electrical properties. Both kinds of oxygen-controlled behaviors could effectively improve lattice order and reduce oxygen vacancies in In2O3 films, which narrowed optical band gap, decreased carrier concentration and increased mobility. Oxygen with a high activity was injected into films in a non-equilibrium manner during plasma-deposited process, and oxygen with a low activity by the equilibrium way accessed in films during annealing process. As a result, under different oxygen acting mechanism, the as-annealed In2O3 film had less structural defects and more oxygen vacancies than that of the as-deposited film by plasma sputtering, and in turn, had better light-transmittance and electrical conductance. Finally, oxygen-controlled behavior in indium oxide film underlies optical and electrical characteristics.

Key words:  inorganic non-metallic materials      In2O3 film      oxygen-controlled sputtering      oxygen-controlled annealing     
Received:  23 June 2020     
ZTFLH:  O484.5  
Fund: National Natural Science Foundation of China(51502126);Natural Science Foundation of Liaoning Province(20180550802)
About author:  WU Fayu, Tel: 15842065451, E-mail: fayuwu@ustl.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.250     OR     https://www.cjmr.org/EN/Y2021/V35/I5/394

ParameterValue
Background vacuum/Pa3.0×10-3
Sputtering pressure/Pa1.1×10-1
Sputtering power/W150
Substrate-target distance/cm13
Substrate temperatureRoom temperature
Sputtering time/min70 (Ar)/120 (Ar+O2)
Flow ratio of Ar and O2/sccm11:0 (Ar)/10:1 (Ar+O2)
Deposited rate/nm·min-14.3 (Ar)/2.5 (Ar+O2)
Oxygen partial pressure/Pa0 (Ar)/1.0×10-2 (Ar+O2)
Table 1  Sputtering parameters of In2O3 film
Fig.1  Annealing curve (a) and SEM images of In2O3 film prepared in pure Ar atmosphere (b), in the condition of oxygen partial pressure 1.0×10-2 Pa (c) and annealed under oxygen partial pressure 1.0×10-2 Pa (d)
Fig.2  XRD pattern of In2O3 film under different processes
Fig.3  Light-Transmittance spectra (a) and optical band gap (b) of In2O3 film
Fig.4  Resistivity (a), sheet resistance (b), carrier concentration (c) and mobility (d) of In2O3 thin films under different processes
1 Chen H J, Liu T, Wang B, et al. Highly efficient charge collection in dye-sensitized solar cells based on nanocomposite photoanode filled with indium-tin oxide interlayer [J]. Adv. Compos. Hybrid Mater., 2018, 1: 356
2 Xu L H, Wu T M. Synthesis of highly sensitive ammonia gas sensor of polyaniline/graphene nanoribbon/indium oxide composite at room temperature [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 7276
3 Chou C Y, Lobo R F. Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts [J]. Appl. Catal., 2019, 583A: 117144
4 Al-Kuhaili M F. Electrical conductivity enhancement of indium tin oxide (ITO) thin films reactively sputtered in a hydrogen plasma [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 2729
5 Lany S, Zakutayev A, Mason T O, et al. Surface origin of high conductivities in undoped In2O3 thin films [J]. Phys. Rev. Lett., 2012, 108: 016802
6 Sudakar C, Dixit A, Kumar S, et al. Coexistence of anion and cation vacancy defects in vacuum-annealed In2O3 thin films [J]. Scr. Mater., 2010, 62: 63
7 Goswami S, Sharma A K. Structural and morphological properties of pulsed laser deposited In2O3 thin films at various oxygen pressures [J]. AIP Conf. Proc., 2019, 2082: 1
8 Kaleemulla S, Reddy A S, Uthanna S, et al. Physical properties of In2O3 thin films prepared at various oxygen partial pressures [J]. J. Alloys Compd., 2009, 479: 589
9 Guo S, Yang L, Zhang X P, et al. Modulation of optical and electrical properties of In2O3 films deposited by high power impulse magnetron sputtering by controlling the flow rate of oxygen [J]. Ceram. Int., 2019, 45: 21590
10 Park S Y, Ji K H, Jung H Y, et al. Improvement in the device performance of tin-doped indium oxide transistor by oxygen high pressure annealing at 150℃ [J]. Appl. Phys. Lett., 2012, 100: 162108
11 Kim N R, Lee J H, Lee Y Y, et al. Enhanced conductivity of solution-processed indium tin oxide nanoparticle films by oxygen partial pressure controlled annealing [J]. J. Mater. Chem., 2013, 1C: 5953
12 Oh Y W, Kim H, Baek K H, et al. Effect of post-annealing on low-temperature solution-processed high-performance indium oxide thin film transistors [J]. Sci. Adv. Mater., 2018, 10: 518
13 Tien C L, Lin H Y, Chang C K, et al. Effect of oxygen flow rate on the optical, electrical, and mechanical properties of DC sputtering ITO thin films [J]. Adv. Condens. Matter Phys., 2018, 2018: 2647282
14 Liu H N, Zhou P P, Zhang L N, et al. Effects of oxygen partial pressure on the structural and optical properties of undoped and Cu-doped ZnO thin films prepared by magnetron co-sputtering [J]. Mater. Lett., 2016, 164: 509
15 Bose S, Arokiyadoss R, Bhargav P B, et al. Modification of surface morphology of sputtered AZO films with the variation of the oxygen [J]. Mater. Sci. Semicon. Proc., 2018, 79: 135
16 Pattipaka S, Goud J P, Bharti G P, et al. Effect of oxygen partial pressure on nonlinear optical and electrical properties of BNT-KNNG composite thin films [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 2986
17 Liu X C, An Y K, Lin Z, et al. Effects of oxygen partial pressure on the microstructure, electrical and optical properties of the Sn-doped In2O3 thin films [J]. Mod. Phys. Lett., 2018, 32B: 1850284
18 Bierwagen O, White M E, Tsai M Y, et al. Plasma-assisted molecular beam epitaxy of high quality In2O3 (001) thin films on Y-stabilized ZrO2 (001) using in as an auto surfactant [J]. Appl. Phys. Lett., 2009, 95: 262105
19 Tikhii A A, Nikolaenko Y M, Zhikhareva Y I, et al. Influence of the thermal conditions of fabrication and treatment on the optical properties of In2O3 films [J]. Semiconductors, 2018, 52: 320
20 Zhao M J, Wu T Y, Xu Y C, et al. Effect of annealing on the electrical performance of indium gallium oxide thin-film transistors [J]. J. Xiamen Univ. Technol., 2019, 27(1): 41
赵铭杰, 吴天雨, 许英朝等. 退火对氧化铟镓薄膜晶体管电学特性的影响 [J]. 厦门理工学院学报, 2019, 27(1): 41
21 Hosen M M, Ullah A K M A, Haque M M, et al. Optical and electrical properties of crystalline indium tin oxide thin film deposited by vacuum evaporation technique [J]. Optoelectron. Lett., 2019, 15: 356
22 Saji K J, Jayaraj M K. Effect of oxygen partial pressure on optical and electrical properties of co-sputtered amorphous zinc indium tin oxide thin films [J]. Phys. Status Solidi, 2008, 205: 1625
23 Tantray F A, Agrawal A, Gupta M, et al. Effect of oxygen partial pressure on the structural and optical properties of ion beam sputtered TiO2 thin films [J]. Thin Solid Films, 2016, 619: 86
24 Kamat P V, Dimitrijevic N M, Nozik A J. Dynamic Burstein-Moss shift in semiconductor colloids [J]. J. Phys. Chem., 1989, 93: 2873
25 Woo S W, Byeol S H B, Choi J, et al. Effects of the process parameters on the properties of sputter-deposited tin oxide thin films [J]. J. Nanosci. Nanotechnol., 2019, 19: 1301
26 Le N M, Lee C S, Patil V, et al. Effects of oxygen partial pressure within the growth ambient on the properties and defect behavior of magnetron sputtered InCdO films [J]. Thin Solid Films, 2019, 682: 131
27 Kim J S, Oh B S, Piao M X, et al. Effects of low-temperature (120℃) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors [J]. J. Appl. Phys., 2014, 116: 245302
28 Anzai H, Takahashi T, Suzuki M, et al. Unusual oxygen partial pressure dependence of electrical transport of single-crystalline metal oxide nanowires grown by the vapor-liquid-solid Process [J]. Nano Lett., 2019, 19: 1675
29 Peng S, Cao X, Pan J G, et al. X-ray photoelectron spectroscopy study of indium tin oxide films deposited at various oxygen partial pressures [J]. J. Electron. Mater., 2017, 46: 1405
30 Wang L K, Yu J Y, Wang L, et al. Effect of doping on the photoelectric properties of tin dioxide thin films [J]. J. Chin. Ceram. Soc., 2018, 46: 590
王立坤, 郁建元, 王丽等. 掺杂对二氧化锡薄膜光电性能的影响 [J]. 硅酸盐学报, 2018, 46: 590
31 Wang Y X, Li R W, Fan W, et al. Effect of annealing oxygen partial pressure on transmittance and conductivity of AZO thin films [J]. Chin. J. Mater. Res., 2018, 32: 861
王艳雪, 李瑞武, 范巍等. 退火氧分压对AZO薄膜的透光和导电性能的影响 [J]. 材料研究学报, 2018, 32: 861
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!