Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (8): 575-580    DOI: 10.11901/1005.3093.2016.157
Orginal Article Current Issue | Archive | Adv Search |
Effect of Length to Diameter Ratio on Compressive Properties of W Fiber/Zr-based Metallic Glass Composite
ZHANG Bo1,2,**, XIE Bowen1, FU Huameng2, ZHANG Haifeng2
1. School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang, 110136, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Bo, XIE Bowen, FU Huameng, ZHANG Haifeng. Effect of Length to Diameter Ratio on Compressive Properties of W Fiber/Zr-based Metallic Glass Composite. Chinese Journal of Materials Research, 2016, 30(8): 575-580.

Download:  HTML  PDF(2990KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The W fiber/Zr-based metallic glass composite was prepared by infiltration and rapid solidification. The effect of the ratios of length to diameter of fibers on the compressive properties of the composite was investigated in detail. The results show that the yield strength firstly decreases with the increase of the length to diameter ratio then reaches a stable value when the ratio is greater than 1. The plastic strain has no obvious change when the ratio is greater than or equal to 1.25, while the plastic strain is bigger than 50% when the ratio is smaller than 1.25. The reason for these phenomena is the comprehensive effect of the friction force between pressure head and the end of the compressive sample, the change of the length to diameter ratio of the metallic glass fibers between W fibers and the mismatching between metallic glass matrix and the W fiber during deformation.

Key words:  metallic materials      W fiber/Zr-based metallic glass composite      aspect ratio      yield strength      compressive plasticity      shear band     
Received:  23 March 2016     
Fund: *Supported by National Natural Science Foundation of China No.51401131

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.157     OR     https://www.cjmr.org/EN/Y2016/V30/I8/575

Fig.1  The XRD patterns of the Zr-based metallic glass (a) and the W fiber/Zr-based metallic glass composite (b)
Fig.2  Compressive stress-strain curves of the Zr-based metallic glass (a), tungsten (b) and W fiber/Zr-based metallic glass composites (c) with different aspect ratio
Fig.3  Dependence of the Compressive yield strength on the aspect ratio. (a) Zr-based metallic glass, (b) tungsten stick and (c) W fiber/Zr-based metallic glass composites
Fig.4  Shear bands and cracks on the sample profiles of the W fiber/Zr-based metallic glass composite
Fig.5  Shear bands and cracks on the sample profiles of the W fiber/Zr-based metallic glass composite
Fig.6  Schematic diagram of the spreading of the shear bands in metallic glass with different aspect ratio under compressive loading
1 W. H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Progress in Materials Science, 57(3), 487(2012)
doi: 10.1016/j.pmatsci.2011.07.001
2 M. Q. Tang, H. F. Zhang, Z. W. Zhu, H. M. Fu, A. M. Wang, H. Li, Z. Q. Hu, TiZr-base Bulk Metallic Glass with over 50 mm in Diameter, Journal of Material Science and Technology, 26(6), 481(2010)
doi: 10.1016/S1005-0302(10)60077-1
3 M. Q. Jiang, W. H. Wang, L. H. Dai, Prediction of shear-band thickness in metallic glasses, Scripta Materialia, 60(11), 1004(2009)
doi: 10.1016/j.scriptamat.2009.02.039
4 Z. F. Zhang, G. He, J. Eckert, L. Schultz, Fracture mechanisms in bulk metallic glassy materials, Physical Review Letters, 91(4), 045505(2003)
5 Z. F. Zhang, J. Eckert, L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass, Acta Materialia, 51(4), 1167(2003)
doi: 10.1016/S1359-6454(02)00521-9
6 K. Zhang, P. C. Si, H. Li, Y. F. Li, Y. Y. Jiang, S. L. Zhang, X. G. Song, Plastic heterogeneity in nanoscale metallic glass, Physica E: Low-dimensional Systems and Nanostructures, 44(7-8), 1461(2012)
doi: 10.1016/j.physe.2012.03.012
7 F. F. Wu, Z. F. Zhang, S. X. Mao, Size-dependent shear fracture and global tensile plasticity of metallic glasses, Acta Materialia, 57(1), 257(2009)
doi: 10.1016/j.actamat.2008.09.012
8 S. Xie, E. P. George, Size-dependent plasticity and fracture of a metallic glass in compression, Intermetallics, 16(3), 485(2008)
doi: 10.1016/j.intermet.2007.11.013
9 B. E. Schuster, Q. Wei, T. C. Hufnagel, K. T. Ramesh, Size-independent strength and deformation mode in compression of a Pd-based metallic glass, Acta Materialia, 56(18), 5091(2008)
doi: 10.1016/j.actamat.2008.06.028
10 R. D. Conner, W. L. Johnson, N. E. Paton, W. D. Nix, Shear bands and cracking of metallic glass plates in bending, Journal of Applied Physics, 94, 904(2003)
doi: 10.1063/1.1582555
11 R. D. Conner, Y. Li, W. D. Nix, W. L. Johnson, Shear band spacing under bending of Zr-based metallic glass plates, Acta Materialia, 52(8), 2429(2004)
doi: 10.1016/j.actamat.2004.01.034
12 L. A. Davis, Y. T. Yeow, Flow and fracture of a Ni-Fe metallic glass, Journal of Materials Science, 15(1), 230(1980)
doi: 10.1007/BF00552449
13 J. J. Lewandowski, P. Lowhaphandu, Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal, Philosophical Magazine A, 82(17-18), 3427(2002)
doi: 10.1080/01418610208240453
14 J. Lu, G. Ravichandran, W. L. Johnson, Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures, Acta Materialia, 51(12), 3429(2003)
doi: 10.1016/S1359-6454(03)00164-2
15 H. A. Bruck, T. Christman, A. J. Rosakis, W. L. Johnson, Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys, Scripta Metallurgica et Materialia, 30(4), 429(1994)
doi: 10.1016/0956-716X(94)90598-3
16 B. Zhang, H. Fu, Z. Zhu, A. Wang, H. Li, C. Dong, Z. Hu, H. Zhang, Synthesis and properties of tungsten balls/Zr-base metallic glass composite, Materials Science and Engineering: A, 540, 207(2012)
doi: 10.1016/j.msea.2012.01.127
17 H. F. Zhang, H. Li, A. M. Wang, H. M. Fu, B. Z. Ding, Z. Q. Hu, Synthesis and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite, Intermetallics, 17, 1070(2009)
18 J. Schroers, W. L. Johnson, Ductile Bulk Metallic Glass, Physical Review Letters, 93(25), 255506(2004)
19 Z. Zhang, G. He, H. Zhang, J. Eckert, Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composites containing ductile dendrites, Scripta Materialia, 52(9), 945(2005)
doi: 10.1016/j.scriptamat.2004.12.014
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!