Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (8): 568-574    DOI: 10.11901/1005.3093.2015.749
Orginal Article Current Issue | Archive | Adv Search |
Molecular Dynamics Study on Bonding Mechanism of 3D Printing of Bone Scaffolds
CHAI Weihong1,2, WANG Yan'en1,**, WEI Qinghua1, YANG Mingming1,2, LI Xinpei1, WEI Shengmin1,2
1. Mechatronics School, Northwestern Polytechnical University, Xi’an 710072, China
2. The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
Cite this article: 

CHAI Weihong, WANG Yan'en, WEI Qinghua, YANG Mingming, LI Xinpei, WEI Shengmin. Molecular Dynamics Study on Bonding Mechanism of 3D Printing of Bone Scaffolds. Chinese Journal of Materials Research, 2016, 30(8): 568-574.

Download:  HTML  PDF(2287KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to understand the bonding mechanism of hydroxyapatite (HA) particles for the 3D printedbone scaffolds with binders, the performance of three commercial binders i.e.PVP, PAM andPVAwas studied by means of molecular dynamics simulationin terms of cohesive energy density, binding energy and pair correlation function g(r), as well as mechanical properties. The results revealed that the relationship of the binding energies between the HA surface with the three binders is consistent with their cohesive energy densities, i.e. PAM > PVA > PVP. The analysis of g(r) indicated that the interfacial interactionof HA and binders could mainly be attributed to the ionic bonds and hydrogen bonds which formed between the polar atoms, functional groups in binder polymer and the Ca, -OH in HA, and the strength of ionic bonds is larger. TheYoung's modulus for the three interaction types of binders/HA can be ranked as the following sequence: PVA/HA > PAM/HA >PVP/HA, which are all inferior to that of the single HA. This conclusion is not completely consistent with the ranking of the relevant binding energies, which means that there is no specific intrinsic relation between the mechanical properties of the three binding types and the related viscidity of binders.

Key words:  inorganic non-metallic materials      hydroxyapatite      molecular dynamics      bonding mechanism      mechanical properities     
Received:  21 December 2015     
Fund: *Supported by National Natural Science Foundation of China No51175432, the Doctor Special Science and Technological Funding of the China Ministry of Education No20116102110046, Fundamental Research Funds for the Central Universities No3102014JCS05007, and Key Industrial Science and Technology Projects of Shaanxi No.2015GY047

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.749     OR     https://www.cjmr.org/EN/Y2016/V30/I8/568

System Number of repeat units Number of chains Number of atoms Initial density/g×cm-3 Finial density /g×cm-3
PVP 20 2 684 0.6 1.201
PAM 31 2 624 0.6 1.316
PVA 50 2 704 0.6 1.265
Table 1  Detail parameters of amorphous cells for polymers
Fig.1  Equilibrium structures of binder/HA interfacial interaction models. (a) PVP/HA(110) interaction model; (b) PAM/HA(110) interaction model; (c) PVA/HA(110) interaction model
Fig.2  CED vs repeat unit number
System Etotal Eploymer EHA Ebind
PVP/HA 398067331 36773 39917761 147803
PAM/HA 39706547 58660 39917652 269765
PVA/HA 39744011 49373 39917778 223140
Table 2  The binding energies between polymers and HA(110) surface (kJ/mol)
Fig.3  The PCFs between the carbon backbone and HA interface
Fig.4  PCFS of binder/HA interface interaction: (a) PCFS of PVP/HA interface interaction; (b) PCFS of PAM/HA interface interaction; (c) PCFS of PVA/HA interface interaction
Fig.5  Young's modulus histograms of the interaction models
1 DU Chang, WANG Yingjun, Progress in the biomineralization Study of bone and enamel and biomimetic synthesis of Calcium phosphate, Journal of Inorganic Materials, 24(5), 882(2009)
(杜昶, 王迎军, 骨与牙釉质组织的生物矿化及磷酸钙材料仿生合成研究进展, 无机材料学报, 24(5), 882(2009))
doi: 10.3724/SP.j.1077.2009.00882
2 Shankar R, Singh D, Shaikh S, Singh G, Yadav A, Jain R, Bone regeneration in osseous defects using hydroxyapatite graft and the extent of ossification in osseous defects treated without graft: a comparative evaluation, Oral. Surg., 10(2), 123(2011)
doi: 10.1007/s12663-011-0189-x pmid: 22654362
3 Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamuruqan N, Preparation, characterization and antimicrobial activity of a bio-comosite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering, Int. J. Biol. Macromol., 49(2), 188(2011)
doi: 10.1016/j.ijbiomac.2011.04.010 pmid: 21549747
4 Chesnutt B M, Yuan Y L, Buddington K, Haqqard W O, Bumqardner J D, Composite chitosan/ nano-hydroxypatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo, Tissue Eng. A, 15(9), 2571(2009)
doi: 10.1089/ten.tea.2008.0054 pmid: 19309240
5 Chiu C K, Ferreira J, Luo T J, Geng H, Lin F C, Ko C C, Direct scaffolding of biomimetic hydroxyapatite-gelatin nanocomposites using aminosilane cross-linker for bone regeneration, J. Mater. Sci. Mater. Med., 23(9), 2115(2012)
doi: 10.1007/s10856-012-4691-6 pmid: 22669282
6 Sachs E, Cima M, Cornie J, Three dimensional printing: Rapid tooling and prototypes directly from a CAD model, Journal of Engineering for Industry, 114(4), 481(1992)
7 ZHAO Huoping, FAN Zitian, YE Chunsheng, Review of research status for Three-Dimensional printing technology in rapid prototyping of powder material, Aeronautical Manufacturing Technology, 9, 42(2011)
(赵火平, 樊自田, 叶春生, 三维打印技术在粉末材料快速成形中的研究现状评述, 航空制造技术, 9, 42(2011))
8 Li L H, Kommareddy K P, Pilz C, Zhou C R, Fratzl P, Manjubala I, In vitro bioactivity of bioresorbable porous polymeric scaffolds incorporating hydroxyapatite microspheres, Acta Biomaterialia, 6, 2525(2010)
doi: 10.1016/j.actbio.2009.03.028 pmid: 19398393
9 Zeltinger J, Sherwood J K, Graham D A, Mueller R, Griffith L G, Effects of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition, Tissue Eng., 7(5), 557(2001)
doi: 10.1089/107632701753213183 pmid: 11694190
10 Lam C X F, Mo X M, Teoh, Scaffold development using 3D printing with a starch-based polymer, Mater Sci. Eng. C, 20(1-2), 49(2001)
11 B. Y. Tay, S. X. Zhang, M. H. Myint, Processing of polycaprolactone porous structure for scaffold development, Journal of Materials Processing Technology, 182, 117(2007)
doi: 10.1016/j.jmatprotec.2006.07.016
12 Brian Derby, Nuno Reis, Inkjet printing of highly loaded particulate suspensions, MRS Bulletin, 28(11), 815(2003)
doi: 10.1557/mrs2003.230
13 Kay M L, Young R A, Crystal structure of hydroxylapatite, Nature, 204, 1050(1964)
14 WANG Yan'en, WEI Qinghua, YANG Mingming, WEI Shengmin, Molecular dynamics simulation of mechanical properties and surface interaction for HA/NBCA, Chinese Journal of Materials Research, 28(2), 333(2014)
(汪焰恩, 魏庆华, 杨明明, 魏生民, 羟基磷灰石/α-氰基丙烯酸正丁酯相互作用及力学性能的MD模拟, 材料研究学报, 28(2), 333(2014))
doi: 10.11901/1005.3093.2013.325
15 Andersen H C, Molecular dynamics simulations at constant pressure and /or temperature, Journal of Chemical Physics, 72, 2374(1980)
16 Tosi M P, Cohesion of ionic solids in the Born model, Solid State Physics, 16, 1(1964)
doi: 10.1016/S0081-1947(08)60515-9
17 Ewald P P, Evaluation of optical and electrostatic lattice potentials, Annals of Physic, 64, 253(1921)
18 WEI Qinghua, WANG Yanen, YANG Mingming, CHAI Weihong, ZHANG Yingfeng, Micro theoretical study on the compatibility and mechanical properties of polyacrylamide/polyvinyl alcohol blends, Journal of Functional Materials, 46(15), 15069(2015)
(魏庆华, 汪焰恩, 杨明明, 柴卫红, 张映锋, 聚丙烯酰胺/聚乙烯醇共混物相容性及力学性能的微观理论研究, 功能材料, 46(15), 15069(2015))
doi: 10.3969/j.issn.1001-9731.2015.15.013
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!