Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (8): 581-588    DOI: 10.11901/1005.3093.2016.150
Orginal Article Current Issue | Archive | Adv Search |
Structure and Flame Retardant Property of Composite Materials MWNTs/CMSs/PET
XUE Baoxia2, NIU Mei1,2,**, LI Jingjing2, YANG Yaru2, DAI Jinming1,2
1. Key Laboratory of Interface Science and Engineering in Advanced Materials , Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
2. College of Textile Engineering , Taiyuan University of Technology, Yuci 030600, China
Cite this article: 

XUE Baoxia, NIU Mei, LI Jingjing, YANG Yaru, DAI Jinming. Structure and Flame Retardant Property of Composite Materials MWNTs/CMSs/PET. Chinese Journal of Materials Research, 2016, 30(8): 581-588.

Download:  HTML  PDF(2801KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composites of Multi-walled carbon nanotubes (MWNTs), carbon microspheres (CMSs) and Polyethylene terephthalate (PET) were prepared by melt blending method.The structures, flame retardancy and pyrolysis behavior of the composites were characterized by scanning electron microscope (SEM)and infrared spectroscopy (IR), as well as limiting oxygen index (LOI)method, vertical burning method (UL-94), cone calorimeter and thermal gravimetric analysis (TG).The results showed that the addition of 1% (mass fraction) of (1MWNTs + 0.5CMSs) into PET resulted in a good comprehensive flame retardancyof the composite. Moreover, in comparison with the pure PET and CMSs/PET, the composites MWNTs/CMSs/PET could reduce effectively the fire risk. The pyrolysis process of PET could be suppressed by the synergistic effect of MWNTs and CMSs due to the following that during burning, on one hand, MWNTs might give rise to form a three-dimensional network of compact carbon layeron the PET surface to decrease the melt drips; on the other hand, CMSs might produce a turbulent carbon layer on the surface of PET, preventing the oxygen and heat from entering the interior of PET and thus releasing the non-flammable CO2 to reduce the concentration of combustible gas in the surrounding environment.

Key words:  composite      flame retardant mechanism      polyethylene terephthalate      multi-walled carbon nanotubes      carbon microspheres     
Received:  19 March 2016     
Fund: *Supported by National Natural Science (Youth) Foundation of China No51302183, National Natural Science Foundation of China No51443005, Shanxi Province Natural Sciences (Youth) Foundation No.2012021021-6, and Shanxi Province Natural Sciences Foundation No.2014011016-5

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.150     OR     https://www.cjmr.org/EN/Y2016/V30/I8/581

Items LOI
/%
tf
/s
Dripping
/dmin-1
Burning grades
Pure PET 21.7 165.0 24 V-2
CMSs/PET(1%, mass fraction) 28.9 39.5 13 V-0
MWNTs/CMSs/PET
(1%, mass fraction)
The mass ratio of MWNTs and CMSs 1:1/4 26.2 22 3 V-0
1:1/2 27.3 6.5 4 V-0
1:1 27.7 16 7 V-0
1:2 28.2 20 8 V-0
1:4 28.6 24.5 11 V-0
Table 1  TheLOI values and vertical combustion parameters of MWNTs / CMSs /PET
Fig.1  The fracture morphologies of MWNTs/CMSs/PET composites with different MWNTs to CMSs mass ratios (a) 1:1/4; (b) 1:1/2; (c) 1:1; (d) 1:2; (e) 1:4
Items PET CMSs/PET MWNTs/CMSs/PET
TTI(s) 28 43 52
FPI(sm2/kW) 0.0542 0.0879 0.0953
TTF(s) 473 401 364
CO(kg/kg) 0.0467 0.0359 0.0347
Table 2  Data of cone testfor PET composites (50kW/m2)
Fig.2  Digital photos of carbon residues after cone test (A1, A2:PET; B1, B2: CMSs/PET; C1, C2: MWNTs/CMSs/PET)
Fig.3  (a) TG-DTG curves of PET in oxygen gas and (b) IR spectra of PET pyrolysis products during the different weightlessness stages (A-the first weightlessness stage; B-the second weightlessness stage)
Fig.4  (a) TG-DTG curves of MWNTs/CMSs/PET in oxygen gas and (b) IR spectra of pyrolysis products during the different weightlessness stages (IR: A-the first weightlessness stage; B-the second weightlessness stage)
1 GUO Deming, JING Xinke, WU Jianing, OU Yingqing, DIFeiyu, CHEN Li, WANG Yuzhong, Synthesis and characterization of a flame-retardant and anti-dripping copolyester, Acta Polymerica Sinica, (9), 1042(2012)
(郭德明, 敬新柯, 吴嘉宁, 欧影轻, 翟飞玉, 陈力, 王玉忠, 一种新型阻燃抗熔滴共聚酯的合成及表征, 高分子学报, (9), 1042(2012))
2 ZHOU Qilin, ZHANG Yue, LI Qiuying, WU Chifei, UV protection property and crystallization behavior of PET/modified carbon black nano composite films, Polymer Material Science and Engineering, 28(3), 92(2012)
(周麒麟, 张玥, 李秋影, 吴驰飞, PET/改性炭黑纳米复合材料薄膜的抗紫外性能和结晶行为, 高分子材料科学与工程, 28(3), 92(2012))
3 JIN Xin, XIAO Changfa, YU Chuankun, XIE Chun, Non-continuous conductive behavior of CB/PET Fiber, Chinese Journal of Material Research, 24(3), 312(2010)
(金欣, 肖长发, 俞传坤, 谢淳, 碳黑/聚酯纤维非连续性导电行为的研究, 材料研究学报, 24(3), 312(2010))
4 B.Dittrich, K.A.Wartig, D.Hofmann, R. Muelhaupt, B.Schartel, Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene, Polymer Degradation and Stability, 98(8), 1495(2013)
doi: 10.1016/j.polymdegradstab.2013.04.009
5 H. F. Yang, J. Gong, X. Wen, J. Xue, Q. Chen, Z.W. Jiang, N.N. Tian, T. Tang, Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivityof polypropylene/carbon fiber composites, Composites Sciences and Technology, 113, 31(2015)
doi: 10.1016/j.compscitech.2015.03.013
6 ZHANG Jianjun, ZHANG Jingzong, JI Quan, XIA Yanzhi, KONG Qingshan, Combustion property and flame-retardant mechanism of MWNTs- OH/PET composites, Journal of Functional Materials, 41(3), 394(2010)
(张建军, 张靖宗, 纪全, 夏延致, 孔庆山, MWNTs-OH/PET纳米复合材料的燃烧性能与阻燃机理研究, 功能材料, 41(3), 394(2010))
7 B. H. Cipiriano, T. Kashiwagi, S. R. Raghavan, Y.Yang, E. A. Grulke, K. Yamamoto, J. R. Shields, J. F. Douglas, Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites, Polymer, 48(20), 6087(2007)
doi: 10.1016/j.polymer.2007.07.070
8 G. B. Huang, S. Q. Wang, P. A. Song, C. L. Wu, S. Q. Chen, X. Wang, Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites, Composites: Part A-Applied Science and Manufacturing, 59, 18(2014)
doi: 10.1016/j.compositesa.2013.12.010
9 B. T. Zhang, X. X. Zheng, H. F. Li, J. M. Lin, Application of carbon-based nanomaterials in sample preparation: A review, AnalyticaChimicaActa, 784, 2(2013)
doi: 10.1016/j.aca.2013.03.054 pmid: 23746402
10 NIU Mei, XUE Baoxia, LI Jingya, WANG Xin, DAI Jinming, Preparation and Properties of CMSs-An/PET Flame Retardant Composites, Chinese Journal of Material Research, 29(2), 144(2015)
(牛梅, 薛宝霞, 李静亚, 王欣, 戴晋明, CMSs-An/PET 复合阻燃材料的制备和性能, 材料研究学报, 29(2), 144(2015))
11 XUE Baoxia, NIU Mei, ZHANG Ying, WANG Xin, YANG Yaru, DAI Jinming, Characterization of the properties of flame retardant PET composites with different nano-carbons, Polymer Material Science and Engineering, 31(4), 65(2015)
(薛宝霞, 牛梅, 张莹, 王欣, 杨雅茹, 戴晋明, 不同纳米碳材料阻燃聚对苯二甲酸乙二醇酯复合材料性能的表征, 高分子材料科学与工程, 31(4), 65(2015))
12 CUI Hongmei, LIU Hong, WANG Jiyang, LI xia, HAN Feng, Agglomeration and disperasion of nano-scale powders, Materials for Mechanical Engineering, 28(8), 38(2004)
(崔洪梅, 刘宏, 王继扬, 李霞, 韩峰, 纳米粉体的团聚与分散, 机械工程材料, 28(8), 38(2004))
doi: 10.3969/j.issn.1000-3738.2004.08.014
13 YE Lei, WU Qianghua, QUBaojun, Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites, Polymer Degradation and Stability, 94(5), 751(2009)
doi: 10.1016/j.polymdegradstab.2009.02.010
14 LIU Fang, SUN Ling, LUO Yuanfang, JIA Demin, Research on flame retardant polypropylene using cone calorimeter, Journal of South China University of Technology (Natural Science Edition), 37(3), 10(2009)
(刘芳, 孙令, 罗远芳, 贾德民, 用锥形量热仪研究膨胀性非卤阻燃聚丙烯阻燃性, 华南理工大学学报(自然科学版), 37(3), 10(2009))
doi: 10.3321/j.issn:1000-565X.2009.03.003
15 OU Yuxiang, LI Jianjun, Testing Methods of Material Flame Retardant, 1sted(Beijing, Chemical Industry Press, 2007)p.140
(欧育湘, 李建军, 材料阻燃性能测试方法, 第1版 (北京, 化学工业出版社, 2007)p.140
doi: 10.7666/d.y1525753
16 HU Xiaoping, Synthesis and application of intumescent flame retardant of polyethylene and their action mechanism, Doctoral Dissertation (Sichuan University, 2005)
(胡小平, 聚乙烯用新型膨胀型阻燃剂的合成与应用及阻燃机理研究, 博士学位论文(四川大学, 2005))
doi: 10.7666/d.y775622
17 P. A. Song, H. Liu, Y. Shen, B. A. Du, Z. P. Fang, Y. Wu, Fabrication of dendrimer-like fullerene (C60)-decorated oligomeric intumescent flame retardant for reducing the thermal oxidation and flammability of polypropylene nanocomposites, Material Chemistry, 19(9), 1305(2009)
18 WENG Shifu, Fourier Transform Infrared Spectroscopy Analysis, 2nded(Beijing, Chemical Industry Press, 2010)p.291-328
(翁诗甫, 傅里叶变换红外光谱分析, 第2版 (北京, 化学工业出版社, 2010)p.291-328)
19 WANG Liansheng, CHEN Kequan, ZHOU Yan, Study on heat decomposition stability of Poly(co-ehylene glycol/1, 4-cyclohexanedimethylne terephthalate) resins, Synthetic Fiber in China, 6(1), 1(2005)
(王濂生, 陈克权, 周燕, PETG树脂热分解稳定性研究, 合成纤维, 6(1), 1(2005))
doi: 10.3969/j.issn.1001-7054.2005.06.001
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!