Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (3): 179-185    DOI: 10.11901/1005.3093.2015.429
Orginal Article Current Issue | Archive | Adv Search |
Effect of Hydrogen Sulfide Corrosion on Fracture Toughness of X80 Pipeline Steel
WANG Jing**(), LUAN Chunbo
(College of Mechanical Engineering and Applied Electronics Technology, BeijingUniversity of Technology, Beijing 100022, China)
Cite this article: 

WANG Jing, LUAN Chunbo. Effect of Hydrogen Sulfide Corrosion on Fracture Toughness of X80 Pipeline Steel. Chinese Journal of Materials Research, 2016, 30(3): 179-185.

Download:  HTML  PDF(971KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fracture toughness of X80 pipeline steel in a simulated petrochemical environment is studied in this paper. Original specimens and saturated H2S pre-corroded specimens were tested respectively and δ-Δa resistance curves were obtained, while the influence of hydrogen sulfide corrosive environment on the resistance curve, fracture toughness and plastic work of X80 pipeline steel was analyzed. It follows that the lower limit of KIC of the pre-corroded X80 steel is 75.43 MPam½, and the hydrogen sulfide corrosion affect significantly on the fracture toughness of X80 steel: the crack growth resistance curve obtained from original specimens is much higher than that of the pre-corroded specimens; the fracture toughness of stable crack propagation δ0.2BL is 0.740 mm and 0.365 mm respectively, and the former is 2.02 times of the latter. In case for a given amount of crack propagation Δa, the plastic work of the original specimen is about 2.29 times of the pre-corroded specimen. Hydrogen sulfide corrosion reduced the fracture toughness of the X80 steel remarkablely. Thus, in the course of natural gas pipeline, hydrogen sulfide corrosive environment should be avoided to keep the steel a proper high toughness to prevent damage.

Key words:  metallic materials      fracture toughness      resistance curve      hydrogen sulfide corrosion     
Received:  27 July 2015     
ZTFLH:  O346.1+2  
Fund: *Supported by National Natural Science Foundation of China No.11302007
About author:  **To whom correspondence should be addressed, Tel: 13810101879, E-mail: wjing@bjut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.429     OR     https://www.cjmr.org/EN/Y2016/V30/I3/179

E/GPa Rm/MPa RP0.2/MPa A/% Z/%
206.0 767.0 661.0 19.1 77.7
Table 1  The main mechanical properties of X80 pipeline steel
Fig.1  Diagram of specimens for three-point bending test (mm)
Sample
number
Fmax
/ kN
FQ
/ kN
Fmax/FQ a0
/ mm
B
/ mm
W-a0
/ mm
g1 KQ
/MPam1/2
RP0.2
/MPa
2.5KQRP0.22
/ mm
Validity judgment
10# 23.85 15.57 1.53>1.10 15.64 15.01 14.36 2.84 59.93 661.0 20.55 Invalid
13# 24.49 16.31 1.50>1.10 14.53 15.10 15.27 2.54 65.79 661.0 24.77 Invalid
14# 24.93 18.99 1.31>1.10 14.71 15.02 15.29 2.58 75.43 661.0 32.55 Invalid
Table 2  Test values of plain strain fracture toughness KIC of corroded X80 pipeline steel
Fig.2  The curvesof loading force F vs. displacement of crack mouth V for saturated H2S pre-corroded X80 pipeline steel (a) 10 # specimen; (b) 13# specimen; (c) 14# specimen
Sample
number
B
/ mm
W
/ mm
S
/ mm
F
/ kN
g1 ν Rp0.2
/ MPa
E
/ GPa
a0
/ mm
Δa
/ mm
Vp
/ mm
z
/ mm
δ
/ mm
A1 15.02 30.10 120.00 31.56 2.58 0.30 661.00 206.00 14.73 0.63 2.81 2.00 0.81
A2 15.03 30.00 120.00 28.50 2.62 0.30 661.00 206.00 14.84 1.34 3.78 2.00 1.05
A3 15.00 30.20 120.00 24.09 2.62 0.30 661.00 206.00 14.81 3.01 5.03 2.00 1.36
A4 14.99 30.20 120.00 26.81 2.66 0.30 661.00 206.00 15.01 2.15 4.63 2.00 1.25
A5 15.10 30.02 120.00 27.86 2.66 0.30 661.00 206.00 15.04 0.83 2.74 2.00 0.76
A6 15.01 30.02 120.00 27.07 2.58 0.30 661.00 206.00 14.71 2.28 4.18 2.00 1.15
Table 3  Test values of fracture toughness δ0.2BL of uncorroded X80 pipeline steel
Sample
number
B
/ mm
W
/ mm
S
/ mm
F
/ kN
g1 ν Rp0.2
/ MPa
E
/ GPa
a0
/ mm
Δa
/ mm
Vp
/ mm
z
/ mm
δ
/ mm
3# 15.10 29.82 120.00 27.88 2.58 0.30 661.00 206.00 14.57 0.25 0.78 2.00 0.26
4# 14.90 29.80 120.00 27.93 2.54 0.30 661.00 206.00 14.54 0.51 1.42 2.00 0.43
5# 15.02 29.72 120.00 29.40 2.54 0.30 661.00 206.00 14.43 0.35 1.13 2.00 0.36
8# 15.11 30.10 120.00 16.46 2.66 0.30 661.00 206.00 15.08 1.18 1.90 2.00 0.52
11# 15.00 30.00 120.00 19.87 3.63 0.30 661.00 206.00 15.90 1.87 2.31 2.00 0.61
12# 15.09 29.92 120.00 16.10 4.43 0.30 661.00 206.00 16.21 2.98 3.03 2.00 0.76
Table 4  Test values of fracture toughness δ0.2BL of corroded X80 pipeline steel
Fig.3  δ-Δa resistance curves of (a) original and (b) saturated H2S pre-corroded X 80 specimens
Fig.4  The value of δQ0.2Bl and validity judgment of (a) original specimens and (b) saturated H2S pre-corroded specimens
Experiment
condition
Data distribution requirements δQ0.2BL δmax 1.87(Rm/Rp0.2) 2da0.2BL Validity judgment
Original Meet conditions 0.740 0.749 2.170 0.886 Valid
Pre-corroded Meet conditions 0.365 0.686 2.170 0.451 Valid
Table 5  Values of δQ0.2BL and validity judgment
Fig.5  Comparison of resistance curves of original and saturated H2S pre-corroded X80 specimens
Fig.6  Comparison of displacement-force curvesof original andsaturated H2S pre-corroded X 80 specimens
1 Zhang L, Shan G, Research and trial production of X80 pipeline steel with high toughness using acicular ferrite, Engineering Science, 3(3), 91(2005)
2 Sose E, Alvarez R J, Time correlations in the dynamicas of hazard ous material pipelines incidents, J .Hazard Mater., 165(3), 1204(2009)
3 Alamilia J L, Espinose M, Sose E, Modelling steel corrosion damage in soil environment, Corros. Sci., 51(11), 2628(2009)
4 XI Yun tao, LIU Daoxin, ZHANG Xiaohua, Research on stress corrosion cracking behavior of X80 pipeline steel in H2S environment, Petroleum Machinery, 34(8), 7(2006)
(奚运涛, 刘道新, 张晓化, X80焊管H2S环境应力腐蚀开裂行为研究, 石油机械, 34(8), 7(2006))
5 WANG Bingying, HUO Lixing, ZHANG Yufeng, WANG Dongpo, H2S stress corrosion test of welded joint for X80 pipeline steel, Pressure Container, 23(7), 15(2006)
(王炳英, 霍立兴, 张玉凤, 王东坡, X80管线钢焊接接头的硫化氢应力腐蚀试验研究, 压力容器, 23(7), 15(2006))
6 CHEN Ye, FEI Jingyin, WAN Binghua, WANG Lei, Stress corrosion crack of buried X80 oil pipeline and its protection, Hot Working Processes, 40(22), 55(2011)
(陈叶, 费敬银, 万冰华, 王磊, 埋地X80石油管道的应力腐蚀与防护, 热加工工艺, 40(22), 55(2011))
7 GB/T 21143–2007, Metallic materials-unified method of test for determination of quasistatic fracture toughness
(GB/T 21143–2007, 金属材料准静态断裂韧度的统一试验方法)
8 NACE MR0175–97, Sulfide stress cracking resistant metallic materials for oilfield equipment, 1997
9 GB/T8650–2006, Evaluation of pipeline and pressure vessel steels for resistance to hydrogen-induced cracking
(GB/T8650–2006, 管线钢和压力容器钢抗氢至开裂评定方法)
10 CHU Wuyang, Hydrogen Damage and Delayed Fracture (Beijing, Metallurgical Industry Press, 1988)p. 57
(褚武扬, 氢损伤和滞后断裂 (北京, 冶金工业出版社, 1988)p.57)
11 HONG Qi, CHEN Yexin, Effects of static and dynamic hydrogen charging on tensile properties of SM490B clean steel, Shanghai Metals, 4(1), 25(2012)
(洪旗, 陈业新, 静态及动态充氢对SM490B纯净钢拉伸性能的作用, 上海金属, 34(1), 25(2012))
12 CHEN Chi, CAI Qigong, WANG Renzhi, Engineering Fracture Mechanics (Beijing, National Defence Industry Press, 1977)p.331
(陈箎, 蔡其巩, 王仁智, 工程断裂力学 (北京, 国防工业出版社, 1977)p.331)
13 LI Qingfen, Fracture Mechanics and the Engineering Application (Harbin: Harbin Engineering University Press, 2007)p.43
(李庆芬,断裂力学及其工程应用 ( 哈尔滨, 哈尔滨工程大学出版社, 2007)p.43)
14 WANG Jing, LI Xiaoyang, ZHANG Yiliang, Low cycle fatigue crack growth rate in H2S environments, Journal of Mechanical Strength, 31(3), 972(2009)
(王晶, 李晓阳, 张亦良, 硫化氢环境中低周疲劳裂纹扩展速率的研究, 机械强度, 31(3), 972(2009))
15 WANG Junqiang, SHUAI Jian, LI Hongli, Measurement and assessment of resistance curve based on crack propagation for pipeline steel, Science Technology and Engineering, 23(12), 5693(2012)
(王俊强, 帅健, 李洪利, 基于裂纹扩展的管道钢阻力曲线测试评估, 科学技术与工程, 23(12), 5693(2012))
16 E. V. Chatzidouros, V. J. Papazoglou, T. E. Tsiourva, D. I. Pantelis, Hydrogen effect on fracture toughness of pipeline steel welds with in situ hydrogen charging, Hydrogen Energy, 36(10), 12626(2011)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!