Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (1): 75-80    DOI: 10.11901/1005.3093.2014.284
Current Issue | Archive | Adv Search |
Thermal Stability of Li(NixCoyMnz)O2/Li4Ti5O12 Battery
Ke WU1,Lihua FENG2,Man CHEN1,Bangjin LIU1,Ping PING2,Qingsong WANG2,**()
1. China Southern Power Grid Power Generation Company, Guangzhou 511400, China
2. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
Cite this article: 

Ke WU,Lihua FENG,Man CHEN,Bangjin LIU,Ping PING,Qingsong WANG. Thermal Stability of Li(NixCoyMnz)O2/Li4Ti5O12 Battery. Chinese Journal of Materials Research, 2015, 29(1): 75-80.

Download:  HTML  PDF(1446KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The thermal stability of the main constructive materials for Li(NixCoyMnz)O2/Li4Ti5O12 batteries was evaluated using a C80 micro calorimeter. The thermal decomposition of anode and cathode, the heat of reactions of electrolyte with anode and cathode, and the heat of reactions of an integral cell were characterized. It follows that with rising temperature the system of anode Li(NixCoyMnz)O2/electrolyte undergoes two exothermic processes with a total heat generation of -526.0 Jg-1 and activation energy of 273.8 kJmol-1; while the system of Li4Ti5O12/electrolyte undergoes four exothermic processes with a total heat generation of -291.5 Jg-1 and activation energy of 61.8 kJmol-1; the reaction processes for an integral cell are the overlap of the reaction processes occurred in the two half cells Li(NixCoyMnz)O2/electrolyte and Li4Ti5O12/electrolyte. The heat runaway phenomenon is triggered by the reactions of the anode/electrolyte, while, of which the main heat source may come from the reactions of the cathode/electrolyte.

Key words:  inorganic non-metallic materials      lithium ion battery      Li4Ti5O12      thermal stability     
Received:  13 June 2014     
Fund: *Supported by National Natural Science Foundation of China No.51176183 and National High Technology Research and Development Program of China No.2011AA05A111.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.284     OR     https://www.cjmr.org/EN/Y2015/V29/I1/75

Fig.1  Heat flow curve of Li(NixCoyMnz)O2 anode materials
Fig.2  Heat flow curve of Li(NixCoyMnz)O2 co-exists with electrolyte
Fig.3  Heat flow curve of Li4Ti5O12
Fig.4  Heat flow curve of Li4Ti5O12 co-exists with electrolyte
Fig.5  Heat flow curves of 1.0 mol/L LiPF6/EC+DEC and 1.0 mol/L LiPF6/EC+DMC
Fig.6  Heat flow curves of Li(NixCoyMnz)O2/Li4Ti5O12 full cell
Serial No. Thermal analysis object ?H/Jg?1 E/kJmol?1 A/s?1
1 Li(NixCoyMnz)O2 cathode ?52.2 465.8 6.9×1048
2 Li4Ti5O12 anode ?71.5 521.3 4.1×1053
3 Li(NixCoyMnz)O2 cathode+electrolyte ?526.0 273.8 8.6×1024
4 Li4Ti5O12 anode+electrolyte ?291.5 61.8 9.8×102
Table 1  Thermodynamics and kinetics parameters of Li4Ti5O12 battery
  
1 WANG Qingsong,SUN Jinhua, YAO Xiaolin, CHEN Chunhua, Thermal behavior inside lithium-ion batteries, Chinese Journal of Applied Chemistry, 23(5), 489(2006)
1 (王青松, 孙金华, 姚晓林, 陈春华, 锂离子电池中的热效应, 应用化学, 23(5), 489(2006))
2 WANG Qingsong,SUN Jinhua, CHEN Sining, YAO Xiaolin, CHEN Chunhua, Research progress in thermal safety of Li-ion batteries, Battery Bimonthly, 135(3), 240(2005)
2 (王青松, 孙金华, 陈思凝, 姚晓林, 陈春华, 锂离子电池热安全性的研究进展, 电池, 135(3), 240(2005))
3 Q. S. Wang, P. Ping, X. J. Zhao, G. Q. Chu, J. H. Sun, C. H. Chen,Thermal runaway caused fire and explosion of lithium ion battery, Journal of Power Sources, 208, 210(2012)
4 J. H. Sun, X. R. Li, K. Hasegawa, G. X. Liao,Thermal hazard evaluation of complex reactive substance using calorimeters and dewar vessel, Journal of Thermal Analysis and Calorimetry, 6(3), 883(2004)
5 WANG Qingsong,SUN Jinhua, Study on the materials thermal properties of lithium ion secondary batteries by using C80 calorimeter, Chinese Journal of Power Sources, 31(8), 592(2007)
5 (王青松, 孙金华, 用C80量热仪研究锂离子蓄电池材料热特性, 电源技术, 31(8), 592(2007))
6 O. Dolotko, A. Senyshyn, M. J. Mühlbauer, K. Nikolowski, H. Ehrenberg,Understanding structural changes in NMC li-ion cells by in situneutron diffraction, Journal of Power Sources, 255, 198(2014)
7 J. Wang, H. L. Zhao, Y. T. Wen, J. Y. Xie, Q. Xia, T. H. Zhang, Z. P. Z, X. F. Du,High performance Li4Ti5O12 material as anode for lithium-ion batteries, Electrochimica Acta, 113, 679(2013)
8 S. Scharner, W. Weppner, P. Schmid-Beurmann,Evidence of two-phase formation upon lithium insertion into the Li1.33 Ti1.67O4, Journal of the Electrochemical Society, 146(3), 857(1999)
9 Q. S. Wang, J. H. Sun, X. L. Yao, C. H. Chen,C80 calorimeter studies of the thermal behavior of LiPF6 solutions, Journal of Solution Chemistry, 35(2), 183(2006)
10 T. Kawamura, A. Kimura, M. Egashira, S. Okada, J. Yamaki,Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells, Journal of Power Sources, 104, 260(2002)
11 J. S. Gnanaraj, E. Zinigrad, L. Asraf, H. E. Gottlieb, M. Sprecher, M. Schmidt, W. Geissler, D. Aurbach,A detailed investigation of the thermal reactions of LiPF6 solution in organic carbonates using ARC and DSC, Journal of the Electrochemical Society, 150, A1533(2003)
12 K. Tasaki, K. Kanda, S. Nakamura, M. Ue,Decomposition of LiPF6 and stability of PF5 in li-ion battery electrolytes, Journal of the Electrochemical Society, 150, A1628(2003)
13 Y. Ono,Dimethyl carbonate for environmentally benign reactions, Pure and Applied Chemistry, 68, 367(1996)
14 SUN Jinhua, DING Hui, Evaluation of Chemical Thermal Hazard (Beijing, Science Press, 2005)p.141-144
14 (p.141-144)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[7] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
No Suggested Reading articles found!