Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (1): 39-44    DOI: 10.11901/1005.3093.2014.286
Current Issue | Archive | Adv Search |
Self-propagating Combustion Synthesis of Ba4In2O7 and Its Photocatalytic Activity
Qinku ZHANG1,2,Binghua YAO1,3,**(),Chao PENG1,Lukang SUN1
1. Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
2. Department of Building Engineering, Yulin University, Yulin 719000, China
3. Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources (Shangluo University), Shangluo 726000, China
Cite this article: 

Qinku ZHANG,Binghua YAO,Chao PENG,Lukang SUN. Self-propagating Combustion Synthesis of Ba4In2O7 and Its Photocatalytic Activity. Chinese Journal of Materials Research, 2015, 29(1): 39-44.

Download:  HTML  PDF(900KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The compounds of tetragonal Ba4In2O7 were synthesized by self-propagating combustion synthesis method from raw materials of Ba(NO3)2, In(NO3)3 and Glycine. The effect of synthesis conditions on the formation and photocatalytic activity of the compounds was investigated. The synthesized Ba4In2O7 was characterized by X-ray diffraction (XRD), thermogravimetric analysis-differential thermal analysis (TG-DTA), UV-visible diffuse reflectance spectroscopy (UV-vis DRS) and N2 adsorption-desorption isotherms (BET), respectively. With rhodamine B (RhB) as a model degradation compound, the effect of calcinations temperature (T), calcinations time (t), Ba to In molar ratio (Ba/In), Glycine to metal ion molar ratio(G/M) and the initial concentration of RhB on the photocatalytic activity of Ba4In2O7 was investigated. The results show that the synthetic Ba4In2O7, prepared by conditions of T=800℃, t=1 h, Ba/In= 2∶1 and G/M=2∶1, has tetragonal structure, higher purity and excellent photocatalytic activity. The RhB (5 mg/L) can be completely decomposed in 3 h under lighting of a high pressure mercury lamp (125 W), and the decolorization rate of RhB can reach 96.5%. The degrading process fits the first-order kinetic model.

Key words:  inorganic non-metallic materials      Ba4In2O7      photocatalysis      self-propagating combustion synthesis      rhodamine B     
Received:  16 June 2014     
Fund: *Supported by National Natural Science Foundation of China No.21276208, Special Research Fund of Education Department of Shaanxi Provincial Government No.11JK0569, and the Research Fund of Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources (Shangluo University) No.2014SKY-WK003 and the Research Fund for Innovation Doctoral Thesis of Xi’an University of Technology No.207-002J1304.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.286     OR     https://www.cjmr.org/EN/Y2015/V29/I1/39

Fig.1  XRD spectrum of Ba4In2O7 sample
Fig.2  UV-vis DRS pattern of Ba4In2O7. The inset curve is the plot
Fig.3  TG-DTA curves of Ba4In2O7 precursor
Heat-treated time / h Average particle size / nm
1 17.2
3 5 24.7 32.4
  
Initial concentration /mgL-1 Kinetic equation R2 t1/2 /min ka /×10-3 mg(Lmin)-1
2.5 ln(c0/ct)=0.0205t-0.030 0.998 33.8 20.5
5.0 ln(c0/ct)=0.0182t-0.1055 0.980 37.8 18.3
10.0 ln(c0/ct)=0.0050t-0.0075 0.997 138 5.00
20.0 ln(c0/ct)=0.0020t-0.0101 0.977 343 2.02
  
Fig.4  N2 adsorption-desorption isotherm curve (a) and the pore size distribution curve (b) of Ba4In2O7 sample
1 A. Lalla, H. K,Müller-Buschbaum, über das Oxoindat Ba2In4O7, Zeitschrift fur Anorganische und Allgemeine Chemie, 573(1), 12(1989)
2 S. Go?a?b, A. Zygmunt, W. R. Romanowski,Synthesis and emission spectra of Ba4In1.98Nd0.02O7 and Ba4In1.98Er0.02O7, Journal of Alloys and Compounds, 300, 295(2000)
3 X. L. Wang, J. P. Tu, S. F. Wang, Y. F. Yuan, K. F. Li, J. Zhang,Preparation of Cr-doped Ba4In2O7/ In2O3 nanocomposite and its photo-assisted chargeability in hydrogen storage alloy/photocatalyst electrode, Journal of Alloys and Compounds, 462(1-2), 220(2008)
4 A. G. Merzhanov,Thermal explosion and ignition as a method for formal kinetic studies of exothermic reactions in the condensed phase, Combustion and Flame, 11(3), 201(1967)
5 Y. J.Hao, F. T. Li, F. Chen, M. J. Chai, R. H. Liu, X. J. Wang,In situ one-step combustion synthesis of Bi2O3/Bi2WO6 heterojunctions with notable visible light photocatalytic activities, Materials Letters, 124, 1(2014)
6 G. S. Christian, A. R.G. Miguel, M. T. M. Leticia, J. R. Isaías, S. M, Daniel.Facile solvo-combustion synthesis of crystalline NaTaO3 its photocatalytic performance for hydrogen production, Fuel, 130, 221(2014)
7 ZHANG Jian,ZHOU Yan, CHEN Sheng, SHENG Jianwei, Synthesis of the visible light photocatalyst CaIn2O4 by sol-gol auto combustion method, Journal of Chemical Engineering of Chinese Universities, 23(1), 105(2009)
7 (张 俭, 周 艳, 陈 胜, 盛嘉伟, 溶胶-凝胶自蔓延燃烧法制备CaIn2O4可见光催化剂研究, 高校化学工程学报, 23(1), 105(2009))
8 M. Dawson, G. B.Soares, C. Ribeiro,Influence of calcinations parameters on the synthesis of N-doped TiO2 by the polymeric precursors method, Journal of Solid State Chemistry, 215, 211(2014)
9 G. P. Dai, S. Q. Liu, Y. Liang,A simple preparation of carbon doped porous Bi2O3 with enhanced visible-light photocatalytic activity, Journal of Alloys and Compounds, 608, 44(2014)
10 L. F. M. Ismail, M. M. Emara, M. M. Ei-Moselhy, N. A. Maziad, O. K. Hussein,Silica coating and photocatalytic activities of ZnO nanoparticles: Effect of operational parameters and kinetic study, Effect of ferric ion doping, Spectrochimical Acta Part A: Molecular and Biomolecular Spectroscopy, 131, 158(2014)
11 M. Shamsipur, H. R. Rajabi,Study of photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet: Effect of ferric ion doping, Spectrochimical Acta Part A: Molecular and Biomolecular Spectroscopy, 122, 260(2014)
12 L. J. Han, X. Zhou, L. N. Wan, Y. F. Deng, S. Z. Zhan,Synthesis of ZnFe2O4 nanoplates by succinic acid-assisted hydrothermal route and their photocatalytic degradation of rhodamine B under visible light, Journal Environment Chemical Engineering, 2(1), 123(2014)
13 P. Z. He, L. M. Song, S. J. Zhang, X. Q. Wu, Q. W. Wei,Synthesis of g-C3N4/Ag3PO4 heterojunction with enhanced photocatalytic performance, Materials Research Bulletin, 51, 432(2014)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
No Suggested Reading articles found!