Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (11): 849-852    DOI: 10.11901/1005.3093.2014.214
Current Issue | Archive | Adv Search |
Influence of Carbon Nanotubes on Oxidation Resistance of Bulk Composites of Mesocarbon Microbeads and Carbon Nanotubes
Zhi WANG(),Hengbing FAN,Wenbin MA,Yanying XU,Xu ZHANG,Jian CHEN,Xu WANG
Shenyang Aerospace University, Shenyang 110136
Cite this article: 

Zhi WANG,Hengbing FAN,Wenbin MA,Yanying XU,Xu ZHANG,Jian CHEN,Xu WANG. Influence of Carbon Nanotubes on Oxidation Resistance of Bulk Composites of Mesocarbon Microbeads and Carbon Nanotubes. Chinese Journal of Materials Research, 2014, 28(11): 849-852.

Download:  HTML  PDF(3109KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bulk composite of mesocarbon microbeads and carbon nanotubes (MCMB/CNTs) was prepared by in-situ thermal polymerization, compression molding and high-temperature sintering. The oxidation resistance of MCMB/CNTs was studied using TG, and isothermal oxidation method. It was found that the oxidation resistance of the composites was enhanced by adding proper amount of CNTs in the matrix. With the increasing amount of CNTs, the interplanar spacing of microcrystall on the carbonized composites decreased and the oxidation resistance became better. An addition of 5% CNTs can induce about 40℃ increase in the initial mass loss temperature of the composite, and the mass loss of the composite was only 8.55% after isothermal oxidation in air for 10 h. But with addition of excessive CNTs, the particle size distribution of the microbeads was broadened and the degree of sphericity of the composite became poor, which led the composite with higher porosity and lower oxidation resistance.

Key words:  inorganic non-metallic materials      carbon nanotube      mesocarbon microbead      oxidation resistance     
Received:  25 April 2014     
Fund: 

*Supported by Shenyang Science and Technology Program No. F12-277-1-33 and Program for Liaoning Excellent Talents in University No.LJQ2012014

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.214     OR     https://www.cjmr.org/EN/Y2014/V28/I11/849

Fig.1  TG curves of the different MCMB specimens
Fig.2  Isothermal oxidation curves of the different MCMB specimens at 420℃
CNT(%) 2θ d (A) 002
0 24.675 3.6050
5 25.641 3.4714
10 25.821 3.4476
Table 1  The crystallite parameters of the different carbonized MCMB specimens
CNT(%) Porosities
0 6.9%
2 3.6%
5 2.9%
10 29.3%
Table 2  The porosities of the different MCMB specimens
Fig.3  SEM images of different MCMB specimens (a) 0%CNT (b) 2%CNT (c) 5%CNT (d) 10%CNT
1 H. Fujimoto,The production method of mesocarbon microbeads and their application, Carbon, 48(8), 2381(2010)
2 Y. S. Yang, C. Y. Wang, M. M. Chen, J. M. Zheng,The role of primary quinoline insoluble on the formation of mesocarbon microbeads, Fuel Processing Technology, 92(1), 154(2011)
3 C. Norfolk, A. Mukasyan, D. Hayes, P. McGinn,?A. Varma. Processing of mesocarbon microbeads to high-performance materials: Part I. Studies towards the sintering mechanism, Carbon, 42(1), 11(2004)
4 C. J. Zhou, P. J. McGinn. The effect of oxygen on the processing of mesocarbon microbeads to high-density carbon, Carbon, 44(9), 1673(2006)
5 Y. Gao, H. H. Song, X. H. Chen. Self-sinterability of mesocarbon microbeads (MCMB) for preparation of high-density isotropic carbon, Journal of Materials Science, 38(10), 2209(2003)
6 J. E. Sheehan, K. W. Buesking, B. J. Sullivan. Carbon-carbon composites, Annual Review of Materials Science, 24, 19(1994)
7 C. J. Zhou, W. S. Kinman, P. J. McGinn,The effect of heat-treatment temperature on structure and properties of TiB2/C composites, Carbon, 45(6), 1200(2007)
8 Z. J. Liu, Q. G. Guo, J. R. Song, L. Liu. Effect of Ti dopant on shrinkage performance of MCMB-derived carbon laminations, Carbon, 45(1), 146(2007)
9 LIAO Baolian,HUANG Li, XIA Hongyan, WANG Jiping, Carbon/carbon composites prepared from mesocarbon microbeads reinforced by carbon fiber, Journal of The Chinese Ceramic Society, 40(5), 723(2012)
9 (廖宝莲, 黄 丽, 夏鸿雁, 王继平, 炭纤维增强中间相炭微球制备炭/炭复合材料, 硅酸盐学报, 40(5), 723(2012))
10 Saeed Safi,Asghar Kazemzadeh. MCMB-SiC composite; new class high-temperature structural materials for aerospace applications, Ceramics International, 39(1), 81(2013)
11 M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson,Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 381, 678(1996)
12 D. A. Walters, L. M. Ericson,?M. J. Casavant,?J. Liu,?D. T. Colbert,?K.A. Smith, R. E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes, Applied Physics Letters, 74(25), 3803(1999)
13 S. Ijima, C. Brabec, A. Maiti, J. Bernholc,Structural flexibility of carbon nanotubes, The Journal of Chemical Physics, 104(5), 2089(1996)
14 B. Wu, Q. M. Gong, J. J. Wu, H. H. Song, J. Liang, Densification of in situ prepared mesocarbon microbead/carbon nanotube composites by hot-press sintering, Transactions of Nonferrous Metals Society of China, 19(3), 646(2009)
15 HUANG Qizhong,Fabrication, structure and application of high-performance carbon/carbon composites, the first edition, (Changsha, Central South University press, 2010) p.425
15 (425)
16 WANG Zhi,WANG Xu, YU Chunhong, Influence of carbon nanotubes on the preparation of mesocarbon microbeads, Journal of Function Materials, S5, 927(2011)
16 (王 志, 王 旭, 于春宏, 碳纳米管对中间相炭微球制备的影响, 功能材料, S5, 927(2011))
17 Z. Wang, B. Wu, Q. M. Gong, H. H. Song, J. Liang,In situ fabrication of carbon nanotube/mesocarbon microbead composites from coal tar pitch, Materials Letters, 62(20), 3585(2008)
18 M. F. Lai, J. Li, J. Yang, J. J. Liu, X. Tong, H. M. Cheng,The morphology and thermal properties of multi-walled carbon nanotube and poly (hydroxybutyrate -co-hydroxyval--erate) composite, Polymer International, 53(10), 1479(2004)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[13] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
No Suggested Reading articles found!