Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (11): 842-848    DOI: 10.11901/1005.3093.2014.256
Current Issue | Archive | Adv Search |
Preparation and Microwave Absorbing Performance of Carbon-based Iron Nitride Nanocomposites
Fazhan LI1,2,Meijie YU2,**(),Yong XU3,Chengguo WANG2,Rui GAO2,Qiong MAO2,Xiaochen CUI2
1. Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061
2. Carbon Fiber Engineering Research Center, College of Materials Science and Engineering, Shandong University, Jinan 250061
3. College of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101
Cite this article: 

Fazhan LI,Meijie YU,Yong XU,Chengguo WANG,Rui GAO,Qiong MAO,Xiaochen CUI. Preparation and Microwave Absorbing Performance of Carbon-based Iron Nitride Nanocomposites. Chinese Journal of Materials Research, 2014, 28(11): 842-848.

Download:  HTML  PDF(3084KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon-based iron nitride nanocomposites were prepared by means of preoxidation and then carbonization of a uniformly blended mixture nano-iron powders and liquid polyacrylonitrile. The prepared nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The electromagnetic performance of the nanocomposites was evaluated by magnetometer and vector network analyzer, and therewith the effect of the carbonization temperature on microwave absorbing performance could be acquired. The results show that the nanocomposite with the desired phase composition can be prepared after carbonization at 750℃. A 1.5 mm thick coating of the nanocomposite has the maximum reflection loss value -13 dB at 15 GHz, and the absorption bandwidths with reflection loss lower than -10 dB are up to 4.5 GHz.

Key words:  composites      absorbing material      amorphous carbon      iron nitride      electromagnetic properties     
Received:  16 May 2014     
Fund: *Supported by National Natural Science Foundation of China No.51101093, and Independent Innovation Foundation of Shandong University No.Z462012ZD048.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.256     OR     https://www.cjmr.org/EN/Y2014/V28/I11/842

Fig.1  Synthetic route of polyacrylonitrile
Fig.2  Process for the preparation of the carbon-based nanocomposites
Temperature/℃ t/min
20-200 50
200-200 10
200-270 60
270-270 30
270-30 50
Table 1  Preoxidization process
Sample Heating rate /(℃/min) Temperature/℃ Atmosphere
A 7 750 Nitrogen
B 7 750 Nitrogen
C 10 700 Nitrogen
D 10 750 Nitrogen
E 10 800 Nitrogen
Table 2  Carbonization process and the corresponding sample
Fig.3  XRD patterns of different stage in the preparation of the carbon-based nanocomposites (a) and the detail with enlarged scale (b) (a-the nano-iron after surface treatment, b-the material before the peroxidation, c-the material after the peroxidation, d- the material after the carbonization)
Fig.4  XRD patterns of the product in different atmosphere
Fig.5  XRD patterns of the product in different carbonization temperatures
Fig.6  SEM (a) and TEM (b) images of sample D
Fig.7  SEM image (a) of sample D and EDS element mapping of Fe (b), N (c)
Fig.8  Magnetic hysteresis loop of sample D
Fig.9  Dielectric constant of the real part (a), the imaginary part (b), the permeability (c) vs frequency of sample C, D, E and the dielectric loss and magnetic loss (d) vs frequency of sample D
Fig.10  Reflection loss of samples C, D, E with the thickness of 2 mm within the frequency range of 2-18 GHz
Fig.11  Dependence of reflection loss on the thickness of the absorption layer within the frequency range of 2-18 GHz for sample D
1 L. Kong, X. W. Yin, F. Ye, Q. Li, L. T. Zhang, L. F. Cheng,Electromagnetic wave absorption properties of ZnO-based materials modified with ZnAl2O4 nanograins, The Journal of Physical Chemistry C, 117(5), 2135(2013)
2 ANG Zhimin,MAO Changhui, DU Jun, YANG Jian, SU Lanying, GAO Zhaozu, Preparation and microwave characterization of ultrafine Fe4N magnetic powders, Chinese Journal of Rare Metals, 26(2), 103(2002)
2 (杨志民, 毛昌辉, 杜 军, 杨 剑, 苏兰英, 高兆祖, Fe4N 电磁波吸收剂的合成及其吸波性能的研究, 稀有金属, 26(2), 103(2002))
3 YANG Zhimin,MAO Changhui, YANG Jian, DU Jun, Matching characteristic of electro-magnetic paramaters of microwave absorbing materials for low frequency (3 GHz), Chinese Journal of Rare Metals, 28(6), 1006(2004)
3 (杨志民, 毛昌辉, 杨 剑, 杜 军, 低频 (3GHz) 微波吸收材料电磁参数匹配特性的研究, 稀有金属, 28(6), 1006(2004))
4 R. N. Panda,?N. S. Gajbhiye, Magnetic properties of single domain ?-Fe3N synthesized by borohydride reduction route, Journal of Applied Physics, 81(1), 335(1997)
5 LIU Zhiwei,YANG Dongfang, ZHAO Huiyou, Preparation and microwave characterization of ultrafine nitriding magnetic particles, Journal of Materials Engineering, 2(3), 30(2007)
5 (刘志伟, 杨东方, 赵会友, 铁氮化合物吸收剂的制备及其微波吸收特性的研究, 材料工程, 2(3), 30(2007))
6 X. L. Shi, M. S. Cao, J. Yuan, X. Y. Fang,Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability, Applied Physics Letters, 95(16), 163108(2009)
7 C. Wang, X. J. Han,?P. Xu, X. L. Zhang, Y. C. Du, R. Su, J. Y. Wang, X. H. Wang, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material, Applied Physics Letters, 98(7), 072906(2011)
8 D. H. Ding, W. C. Zhou, B. Zhang, F. Luo, D. M. Zhu,Complex permittivity and microwave absorbing properties of SiC fiber woven fabrics, Journal of Materials Science, 46(8), 2709(2011)
9 M. S. Cao, W. L. Song, Z. L. Hou, B. Wen, J. Yuan,The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave absorption of short carbon fiber/silica composites, Carbon, 48(3), 788(2010)
10 X. Tang, Q. Tian, B. Y. Zhao, K. A. Hu,The microwave electromagnetic and absorption properties of some porous iron powders, Materials Science and Engineering: A, 445, 135(2007)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[7] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[8] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[9] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[10] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[11] CHEN Guanzhen, CHEN Ping, XU Dongwei, MIN Weixing. Preparation and Microwave Absorbtion Performance of Composite Hollow Carbon/Fe3O4 Magnetic Quantum Dots[J]. 材料研究学报, 2022, 36(1): 29-39.
[12] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[13] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[14] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[15] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
No Suggested Reading articles found!