Please wait a minute...
Chinese Journal of Materials Research  2013, Vol. 27 Issue (5): 526-531    DOI:
Current Issue | Archive | Adv Search |
Preparation and Photocatalytic Degradation Properties #br#of a Fe(III)-taPc/ZnO NWs/SiO2 Ternary Composite Photo-catalyst
LI Xuefei ZHANG Ruifeng**
(Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211)
Cite this article: 

LI Xuefei, ZHANG Ruifeng. Preparation and Photocatalytic Degradation Properties #br#of a Fe(III)-taPc/ZnO NWs/SiO2 Ternary Composite Photo-catalyst. Chinese Journal of Materials Research, 2013, 27(5): 526-531.

Download:  PDF(1910KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  ZnO nanowires were prepared by crystal seed formation in situ and hydrothermal synthetic process in large-sized macroporous SiO2 materials. The nanowires are formed by wurtzite ZnO crystal with a diameter of about 15—20 nm, which display a randomly-coiled morphology, good dispersion as well as stable structure. ZnO NWs/SiO2 complex can effectively load Fe (Ш)-taPc to offer ternary composite photo-catalyst Fe(Ш)-taPc/ZnO NWs/SiO2 with a maximum loading rate(mass fraction) of 11.5%. The photo-catalyst Fe(Ш)-taPc/ZnO NWs/SiO2 was characterized by means of SEM, XRD, UV-Vis diffuse reflectance spectrometry and Raman spectrometry. The photocatalytic activity of the photocatalysts was also determined by using Rhodamine B as the objective substance. The catalyst exhibited good activity for the degradation of Rhodamine B under visible light, and the reaction followed first-order kinetic equation. The catalyst containing 3.5% of Fe(Ш)-taPc showed highest activity, and can degrade 98.6% of Rhodamine B within 60 min. The presence of ZnO NWs promoted the photocatalytic activity by an average of 77%. The activity decreased very slightly after six circular utilizations, showing that the catalyst was stable and reusable.
Key words:  inorganic non-metallic materials      macroporous SiO2      ZnO NWs      Fe(Ш)-taPc      visble-light photocatalysis     
ZTFLH:  TB321  

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2013/V27/I5/526

[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!