Please wait a minute...
Chinese Journal of Materials Research  2012, Vol. 26 Issue (5): 461-466    DOI:
Current Issue | Archive | Adv Search |
Compound States Profile and Thickness of Ultra–thin Silicon Dioxide Film
DU Huiwei, SHEN Ling, DING Hu, YANG Jie, ZHAO Lei, MA Zhongquan
SHU-SolarE R&D Lab, Department of Physics, College of Sciences, Shanghai University, Shanghai 200444
Cite this article: 

DU Huiwei SHEN Ling DING Hu YANG Jie ZHAO Lei MA Zhongquan. Compound States Profile and Thickness of Ultra–thin Silicon Dioxide Film. Chinese Journal of Materials Research, 2012, 26(5): 461-466.

Download:  PDF(1204KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

By rapid thermal process, the initial thermal oxidation of single-side polished silicon wafer has been accurately obtained at 800   by oxygen switching for 15, 30 and 60 min oxidation time to form ultra thin silicon oxide layers. The ultra thin silicon oxidation layers were analyzed. The results show that the main composition of these layers is silicon dioxide, and the thicknesses are (4.1±0.4) nm, (6.2±0.6) nm and (9.6±0.5) nm, respectively. The incomplete oxides of Si2O3, SiO and Si2O all less than 5% of total oxidation layer formed at the interface between Si and SiO2. For those silicon oxide layers with the thickness of 4.1 and 6.2 nm, the difference of the binding energy between SiO2 and Si increases with decrease of graze angles, and the kinetic energy of photoelectron is affected by the build-in potential in the surface of the n-type silicon substrate. However, for the layers with 9.6 nm thick silicon oxide, the kinetic energy of photoelectron is dominated by the positive charge in the silicon oxide.

Key words:  inorganic non-metallic materials      ultra-thin silicon oxide      angel-resoved XPS      rapid thermal process      fixed surface positive charge     
Received:  28 November 2011     
ZTFLH:  TB321  
  TN305  
Fund: 

Supported by National Natural Science Foundation of China No.60876045, Shanghai Leading Basic Research Project No.09JC1405900, Shanghai Leading Academic Discipline Project No.S30105, and R&D Foundation of SHU-SOENs PV Joint Lab No.SS-E0700601.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I5/461

1 Laegu Kang, Byoung Hun Lee, Wen-Jie Qi, Yongjoo Jeon, Nieh. R, Gopalan. S, Onishi. K, Lee. J.C, Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric, IEEE Electron Device Letters, 21(4), 181(2000)

2 Jan Schmidt, Mark Kerr and Andres Cuevas, Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/pasma SiN stacks, Semicond. Sci. Technol., 16, 164(2001)

3 Wilson W. Wenas, Syarif Riyadi, Carrier transport in high-efficiency ZnO/SiO2/Si solar cells, Soler Energy Materials & Soalr Cells, 90, 3261(2006)

4 He Bo, Ma Zhongquan, Xu Jing, Zhao Lei, et.al, Realization and characterization of an ITO/AZO/SiO2/p-Si SIS heterojunction, Superlattices and Microstructures, 46, 664(2009)

5 L.Shen, H.W.Du, H.Ding, J.Tang, Z.Q.Ma, Regiondependent behavior of I-V characteristics in n-ZnO:Al/p-Si contacts, Materials Science in Semiconductor Processing, 13(5-6), 339(2011)

6 M.Uematsu, H.Kageshima, K.Shiraishi, Microscopic mechanism of thermal silicon oxide growth, Computational Materials Science, 24, 229(2002)

7 Romuald B. Beck, Formation of ultrathin silicon oxidesmodeling and technological constraints, Materals Science in Semiconductor Processing, 6, 49(2003)

8 H.Cui, C.X.Wang, G.W.Yang, D.Jiang, Origin of unusual rapid oxidation process for ultrathin oxidation of silicon, Applied Physics Letters, 93, 203113(2008)

9 L.Shen, Z.Q.Ma, C.Shen, F.Li, Bo.He, F.Xu, Studies on fabrication and characterization of a ZnO/p-Si-based solar cell, Superlattices and Microstructures, 48, 426(2011)

10 Min Hung Lee, Cheng-Ya Yu, Fon Yuan, K.F. Chen, Chang Chi Lai, and Chee Wee Liu, Reliability improvement of Rapid Thermal Oxide using gas switching, IEEE Transactions on Semiconductor Manufacturing, 16, 4(2003)

11 M.P.Seah, S.J.Spencer, Ultrathin SiO2 on Si IV. Intensity measurement in XPS and deduced thickness linearity, Surf. Interface Anal., 35, 515(2003)

12 Fen Liu, Zhijuan Zhao, Liangzhong Zhao and Hai Wang, Considerations of the intermediate oxides via XPS elemental quantitative analysis for the thickness measurements of ultrathin SiO2 on Si, Surf. Interfac Anal., 43, 1015(2011)

13 Hill J.M., Royce D.G., Fadley C.S. et al. Properties of oixdized silicon as determined by angular dependent Xray photoelectron spectroscopy, Chem. Phys. Lett., 44, 225 (1976)

14 Eugene A. Irene, Ultra-thin SiO2 film studies: index, thickness, roughness and the initial oxidation regime, Solid-State Electronics, 45, 1207(2001)

15 LIU Enke, ZHU Bingsheng, LUO Jinsheng, The Physics of Semiconductors (Beijing, Publishing House of Electronics Industry, 2011) p.258-261

(刘恩科, 朱秉升, 罗晋生, 半导体物理学, 第7版(北京,  电子工业出版社, 2011) p.258-261)

16 K.Hirose, K.Sakano, K.Takahashi, T.Hattori, Characterization of SiO2/Si interfaces by using X-ray photoelectron spectroscopy time-dependent measurement, Surface Science,

507-510, 906(2002)

17 J.E.Demuth, W.J.Thompson, N.J.DiNardo, R.Imbihl, Photoemission-based photovoltage probe of semiconductor surface and interface electronic structure, Phys. Rev. Lett., 56, 1408(1986)

18 K.Z.Zhang, J.N.Greeley, Mark M.Banaszak Holl, The role of extra-atomic relaxation in determining Si 2p bingding energy shifts at silicon/silicon oxide interfaces, J. Appl. Phys., 82, 5(1997)

19 Burak Ulgut, Sefik Suzer, XPS studies of SiO2/Si system under external bias, J. Phys. Chem. B, 107, 2939(2003)

[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!