Please wait a minute...
Chinese Journal of Materials Research  2012, Vol. 26 Issue (5): 467-475    DOI:
Current Issue | Archive | Adv Search |
Mechanical Properties in the Tempering Process of a Low-alloy Quenched and Tempered Steel
WANG Chao, WANG Zhaodong, WANG Guodong
The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
Cite this article: 

WANG Chao WANG Zhaodong WANG Guodong. Mechanical Properties in the Tempering Process of a Low-alloy Quenched and Tempered Steel. Chinese Journal of Materials Research, 2012, 26(5): 467-475.

Download:  PDF(1456KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of tempering temperature on mechanical properties and microstructure of a lowalloy quenched and tempered steel was investigated. The results show that the as-quenched status is lath martensite with self-tempered precipitates, which possesses both good strength and toughness. The amount of plate-like precipitates increases when tempered at around 250℃, and the yield strength gets a certain rise thereby. Carbide film precipitated along lath boundaries at 400℃ inducing tempered martensite
embrittlement. The lath morphology still remains generally after high temperature tempering, while laths in some local areas have merged to block ferrite grains. A large amount of nano-scale carbide precipitates was observed above 550℃, and cementite particles were coarsened apparently. Fine grain strengthening and precipitation strengthening are the main strengthening mechanisms of the steel. The microstructure evolvement and precipitation characteristics influence the tensile curve shape and n value directly.

Key words:  metallic materials      low-alloy quenched and tempered steel      tempering      microstructure      mechanical properties     
Received:  18 June 2012     
ZTFLH:  TG142  
Fund: 

Supported by National Key Basic Research and Development Program of China 2010CB630801.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I5/467

1 ZHANG Xiaogang, Development of high strength low alloy steel in recent years, Iron and Steel, 46(11), 1(2011)

(张晓刚, 近年来低合金高强度钢的进展, 钢铁,  46(11), 1(2011))

2 ZHENG Hua, LIU Changming, HAN Rongdong, ZHENG Lin, Determination of Mo content and heat treatment of 960MPa Mo-containing low-carbon steel, Materials for Mechanical Engineering, 34(2), 8(2012))

(郑  华, 刘昌明, 韩荣东, 郑琳, 960MPa级含钼低碳钢钼含量与热处理工艺的确定, 机械工程材料,  34(2), 8(2012))

3 WANG Lijun, CAI Qingwu, YU Wei, WU Huibin, LEI Aidi, Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel, Acta Metallurgica Sinica, 46(6), 687(2010)

(王立军, 蔡庆伍, 余 伟, 武会宾, 雷爱娣, 1500MPa级低合金超高强钢的微观组织与力学性能, 金属学报,  46(6), 687(2010))

4 CHEN Bingzhang, ZHU Fuxian, CHEN Yongli, JIN Ru, JIANG Zhonghang, Optimization of controlled rolling and cooling process on low-alloy high-strength quenched and tempered steel, Iron and Steel, 45(6), 88(2010)

(陈炳张, 朱伏先, 陈永利, 金 茹, 姜中行, 低合金高强度调质钢控轧控冷工艺优化, 钢铁, 45(6), 88(2010))

5 YU Hao, ZHANG Daoda, XIAO Rongting, ZHOU Ping, LI Canming, Effect of tempering temperature on the structural properties of precipitates in Q960 steel, Journal of University of Science and Technology Beijing, 33(6), 715(2011)

(于 浩, 张道达, 肖荣亭, 周 平, 李灿明, 回火温度对Q960钢析出物组织特征的影响, 北京科技大学学报,  33(6), 715(2011))

6 Soon Tae Ahn, Dae Sung Kim, Won Jong Nam, Microstructural evolution and mechanical properties of low alloy steel tempered by induction heating, Journal of Materials Processing Technology, 160, 54(2005)

7 YU Wei, QIAN Yajun, WU Huibin, YANG Yuehui, Effect of heat treatment process on properties of 1000 MPa ultra-high strength steel, Journal of Iron and Steel Research, International, 18(2), 64(2011)

8 Woong Seong Chang, Microstructure and mechanical properties of 780 MPa high strength steels produced by direct-quenching and tempering process, Journal of Materials Science, 37, 1973(2002)

9 J.Huang, W.J.Poole, M.Militzer, Austenite formation during intercritical annealing, Metallurgical and Materials Transactions A, 35A, 3363(2004)

10 D.V. Shtansky, K. Nakai, Y. Ohmori, Pearlite to austenite transformation in an Fe–2.6Cr–1C alloy, Acta Materialia, 47(9), 2619(1999)

11 S.Morito, H.Saito, T.Ogawa, T.Furuhara, T.Maki, Effect of austenite grain size on the morphology and crystallograghy of lath martensite in low carbon steels, ISIJ International, 45(1), 91(2005)

12 T.Furuhara, K.Kikumoto, H.Saito, T.Sekine, T.Ogawa, S.Morito, T.Maki, Phase transformation from fine-grained austenite, ISIJ International, 48(8), 1038(2008)

13 QI Jingyuan, LI Yongjun, ZHOU Huijiu, The retained austenite, twinned substructure and auto-tempered carbide in as-quenched low carbon martensite, Transactions of Materials and Heat Treatment, 5(1), 42(1984)

(齐靖远, 黎永钧, 周惠久, 淬火态低碳板条马氏体中的残余奥氏体、孪晶亚结构与自回火碳化物, 材料热处理学报,  5(1), 42(1984))

14 K.Maweja, W.Stumpf, N.van der Berg, Characteristics of martensite as a function of the Ms temperature in low-carbon, Materials Science and Engineering A, 519, 121(2009)

15 G.B. Olson, Morris Cohen, Early stages of aging and tempering of ferrous martensites, Metallurgical Transactions A, 14A, 1057(1983)

16 W.S.Lee, T.T.Su, Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions, Journal of Materials Processing Technology, 87, 198(1999)

17 M.J.Van Genderen, M.Isac, A.Bottger, E.J.Mittemeijer, Aging and tempering behavior of iron-nickel-carbon and iron-carbon martensite, Metallurgical and Materials Transactions A, 28A, 545(1997)

18 XU Zuyao, CAO Siwei, Mechanism of temper martensite embrittlement, Acta Metallurgica Sinica, 23(6), 477(1987)

(徐祖耀, 曹四维, 回火马氏体脆性的机制, 金属学报,  23(6),  477(1987))

19 H.Kitahara, R.Ueji, N.Tsuji, Y.Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Materialia, 54, 1279(2006)

20 S.Morito, H.Tanaka, R.Konishi, T.Furuhara, T.Maki, The morphology and crystallography of lath martensite in Fe-C alloys, Acta Materialia, 51, 1789(2003)

21 B.P.J.SANDVIK, C.M.Wayman, Characteristics of lath martensite: part I. crystallographic and substructural features, Metallurgical Transactions A, 14A, 809(1983)

22 S.Morito, X.Huang, T.Furuhara, T.Maki, N.Hansen, The morphology and crystallography of lath martensite in alloy  steels, Acta Materialia, 54, 5323(2006)

23 S.Morito, H.Yoshida, T.Maki, X.Huang, Effect of block  size on the strength of lath martensite in low carbon steels, Materials Science and Engineering A, 438-440, 237(2006)

24 R.N.Caron, G.Krauss, The tempering of Fe-C lath martensite, Metallurgical Transactions, 3, 2381(1972)

25 YONG Qilong, The Second Phase in Steels (Beijing, Metallurgical Industry Press, 2006) p.484-507

(雍歧龙,  钢铁材料中的第二相, (北京, 冶金工业出版社, 2006) p.484-507)

26 J.H.Holloman, Tensile deformation, Trans. AIME, 162, 268(1945)

27 Reza Abbaschian, Lara Abbaschian, Robert E. Reed-Hill, Physical Metallurgy Principles, 4th edition (Stamford USA, CENGAGE Learing, 2009) p.639-641

28 J.Pesicka, A.Dronhofer, G.Eggeler, Free dislocations and boundary dislocations in tempered martensite ferritic steels, Materials Science and Engineering A, 387-389, 176(2004)

29 Y.Hosoya, H.Kobayashi, T.Shimomura, K.Matsudo, K.Kurihara, Conf. Proc. on Technology of Continuous Annealed Cold Rolled Sheet Steel, TMS-AIME, 1984, 61-77

30 W.Yan, L.Zhu, W.Sha, Y.Y.Shan, K.Yang, Change of tensile behavior of a high-strength low-alloy steel with tempering temperature, Materials Science and Engineering A, 517, 369(2009)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!