Please wait a minute...
Chin J Mater Res  2012, Vol. 26 Issue (1): 49-54    DOI:
论文 Current Issue | Archive | Adv Search |
Electrodeposition and Electrocatalytic Properties of Silver–Copper Bimetallic Nanoalloy
LIU Jing, CHEN Fuyi, ZHANG Jiye, FAN Lihong, ZHANG Jinsheng
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
Cite this article: 

LIU Jing CHEN Fuyi ZHANG Jiye FAN Lihong ZHANG Jinsheng. Electrodeposition and Electrocatalytic Properties of Silver–Copper Bimetallic Nanoalloy. Chin J Mater Res, 2012, 26(1): 49-54.

Download:  PDF(1059KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Silver–copper (Ag–Cu) bimetallic nanoalloys were prepared by electrodeposition methods and their microstructure, morphology and electrocatalytic properties were characterized by XRD, HRTEM, SEM and electrochemical workstation. The results show that the silver–copper bimetallic nanoalloy electrodes exhibit a large reduction current peak in H2O2 solutions, indicating that silver-copper bimetallic nanoalloy can be used as a cathode catalytic. The morphology of silver-copper bimetallic nanoalloys changes from spiciform crystal to dendritic crystal and the cathode catalytic performance decreases with increasing deposition potential; The morphology of the nanoalloys changes from dendritic crystal to rod-shaped crystal and the cathode catalytic performance increases with the increasing of Cu2+ concentrations. It can be concluded that the synergistic effects are observed in the electrocatalytic performance for silver-copper bimetallic nanoalloys.
Key words:  metallic materials      electrodeposition      silver–copper bimetallic nanoalloy      catalytic performance     
Received:  23 June 2011     
ZTFLH: 

TG146

 
Fund: 

Supported by National Natural Science Foundation of China Nos.50971100 and 50671082, the NPU Foundation for Fundamental Research No.NPU–FFR–ZC200931, the Research Fund of State Key Laboratory of Solidification Processing, NWPU, No.30–TP–2009, and the Graduate Starting Seed Fund of Northwestern Polytechnical University Nos.Z2011002, Z2010011and Z200915.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I1/49

1 M.E.Indig, R.N.Snyder, An interesting anodic fuel (1), J. Electrochem. Soc., 109(11), 1104(1962)

2 S.C.Amendola, P.Onnerud, M.T.Kelly, P.J.Petillo, S.L.Sharp-Goldman, M.Binder, A novel high power density borohydride-air cell, J. Power Sources,  84(1), 130(1999)

3 S.M.Lee, J.H.Kim, H.H.Lee, P.S.Lee, J.Y.Lee, The Characterization of an alkaline fuel cell that uses hydrogen storage alloys, J.Electrochem. Soc.,  149(5), A603(2002)

4 WANG Yonggang, XIA Yongyao, A direct borohydride fuel cell using MnO2-catalyzed cathode and hydrogen storage alloy anode, Electrochem. Commun., 8(11), 1775(2006)

5 FENG Ruixiang, CAO Yuliang, AI Xinping, YANG Hanxi, AgNi alloy used as anodic catalyst for direct borohydride fuel cells, Acta Phys. Chim. Sin.,  23(6), 932(2007)

(冯瑞香, 曹余良, 艾新平, 杨汉西, AgNi合金作为直接硼氢化物燃料电池的阳极催化剂, 物理化学学报, 23(6), 932(2007))

6 N.A.Choudhury, R.K.Raman, S.Sampath, A.K.Shukla, An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant, J. Power Sources,  143(1), 1(2005)

7 G.H.Miley, N.Luo, J.Mather, R.Burton, G.Hawkins, L.F.Gu, E.Byrd, R.Gimlin, P.J.Shrestha, G.Benavides, J.Laystrom, D.Carroll, Direct NaBH4H2O2 fuel cells, J. Power Sources,  165(2), 509(2007)

8 R.K.Raman, N.A.Choudhury, A.K.Shukla, A 28-W portable direct borohydride--hydrogen peroxide fuel-cell stack, Electrochem. Solid State Lett., 7(12), A488(2004)

9 R.R.Bessette, J.M.Cichon, Dischert., E.G.Dow, A study of cathode catalysis for the aluminium/hydrogen peroxide semi-fuel cell, J. Power Sources,  80(1), 248(1999)

10 Russell R. Bessette, Maria G. Medeiros, Charles J. Patrissi, Craig M. Deschenes Christopher N. LaFratta, Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications, J. Power Sources,  96(1), 240(2001)

11 YANG Weiqian, YANG Shaohua, SUN Wei, SUN Gongquan, XIN Qin, Nanostructured palladium-silver coated nickel foam cathode for magnesium--hydrogen peroxide fuel cells, Electrochim. Acta,  52, 9(2006)

12 WEI Jianliang, WANG Xianyou, WANG Hong, YANG Shunyi, DAI Chunling, PEI Fu, Performance of nanosized Au particle as a cathode catalyst for direct borohydride-hydrogen peroxide fuel cell, Acta Chim. Sin.,  66(24), 2675(2009)

(魏建良, 王先友, 王宏, 杨顺毅, 戴春岭, 裴斧,纳米Au粒子作为直接硼氢化钠--过氧化氢燃料电池阴极催化剂, 化学学报,  66(24), 2675(2009))

13 YANG Weiqian, YANG Shaohua, SUN Wei, SUN Gongquan, XIN Qin, Nanostructured silver catalyzed nickel foam cathode for an aluminum--hydrogen peroxide fuel cell, J. Power Sources,  160, 1420(2006)

14 KE Xi, CUI Guofeng, SHENG Peikang, Stability of Pd--Fe alloy catalysts, Acta Phys. Chim. Sin.,  25(2), 213(2009)

(柯曦, 崔国峰, 沈培康, 钯铁合金催化剂的稳定性, 物理化学学报,  25(2), 213(2009))

15 WU Gang, Karren L. More, Christina M. Johnston, Piotr Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline,iron, and cobalt, Science,  332, 443(2011)

16 J.H.Sinfelt, Bimetallic Catalysts: Discovery, Concepts, and Applications (New York, Wiley, 1983) p.130

17 G.Schmid, A.Lehnert, J.O.Malm, J.O.Bovin, Ligand-stabilized bimetallic colloids identified by HRTEM and EDX, Angewandte Chemie International Edition in English,  30(7), 874(1991)

18 I.Sunagawa, Morphology of Crystals (Kluwer Acaddemic, Dordrecht, 1987) p.509

19 LI Zhongchun, CHEN Xuhong, ZHAO Xinghong, ZHAO Zhenyi, Preparation and electroca talytic properties of silver-copper bimetallic nanoalloy, Journal of Jiangsu Teachers University of Technology,  16(9), 49(2010)

(李中春, 陈旭红, 赵兴红, 赵祯怡, Ag--Cu双金属纳米粒子的制备及其电催化性质, 江苏技术师范学院学报,  16(9), 49(2010))

20 WANG Guiling, LAN Jian, CAO Dianxue, SUN Kening, Recent advance in research on direct NaBH$_{4$/H$_{2$O$_{2$ fuel cells, Journal of Chemical Industry and Engineering (China),  59(4), 805(2008)

(王贵领, 兰剑,曹殿学, 孙克宁, 直接NaBH$_{4$/H$_{2$O$_{2$燃料电池的研究进展, 化工学报, 59(4), 805(2008))

21 WU Huihuang, Application of Electrochemical Basis (Xiamen, Xiamen University Press, 2006) p.160

(吴辉煌, 应用电化学基础 (厦门, 厦门大学出版社, 2006) p.160)

22 CHANG Gang, JIANG Zucheng, PENG Tianyou, HU Bin, Preparation of high-specific-surface-area nanometer-sized alumina by sol-gel method and study on adsorption behaviors of transition metal ions on the alumina powder with icp-aes, Acta Chim. Sin.,  60(1), 100(2003)

(常钢, 江祖成, 彭天佑, 胡斌, 溶胶--凝胶法制备高比表面积的纳米氧化铝及其对过渡金属离子吸附行为的研究, 化学学报,  60(1), 100(2003))

23 FAN Youjun, ZHEN Chunhua, CHEN Shengpei, SUN Shigang, Effect of specific adsorption of anions and surface structure of Pt(111) electrode on kinetics of dissociative adsorption of ethylene glycol, Acta Phys. -Chim. Sin.,  25(5), 999(2009)

(樊友军, 甄春花, 陈声培, 孙世刚, 阴离子特性吸附和Pt(111)电极表面结构对乙二醇解离吸附动力学的影响, 物理化学学报,  25(5), 999(2009))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!