Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (1): 67-72    DOI:
论文 Current Issue | Archive | Adv Search |
The Mechanism of Fatigue Crack Initiation of 2024–T3 and 2524–T34 Aluminum Alloys
WANG Qingliang1,  SUN Yanmin1,  ZHANG Lei2
1.College of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621000
2.Department of Engineering Mechanics, Sichuan University, Chengdu 610065
Cite this article: 

WANG Qingliang SUN Yanmin ZHANG Lei. The Mechanism of Fatigue Crack Initiation of 2024–T3 and 2524–T34 Aluminum Alloys. Chin J Mater Res, 2011, 25(1): 67-72.

Download:  PDF(898KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructure and mechanism of fatigue crack initiation of 2024–T3 and 2524–T34 Al alloys were investigated. Four–point bending and tension –tension fatigue tests on the tested alloys with a frequency of 15 Hz, R=0.1 along the rolling direction were conducted at room temperature. It was found that the flat grain was elongated along the rolling direction, showing the laminar grain structure. The amount of coarse and irregular particles and the density of secondary particles  distributed in 2024 were much higher than that in 2524. Particles in 2524 distributed stripped along the rolling direction. The majority of fatigue cracks of 2524 were initiated on the coarse β phase second particle, containing Fe, a few of them formed on sites of material defects or slip bands. The intrusion and extrusion induced by slip band in the Al cladding layer provided principal fatigue crack initiation sites for 2024 and 2524 Al–cladding aluminum alloys.
Key words:  foundational discipline in materials science        aluminum alloy        the second–phase particle       fatigue crack        fatigue crack initiation     
Received:  11 June 2010     
ZTFLH: 

TG111

 
Fund: 

Supported by National Funds for Distinguished Young Scientists of China No.10925211 and Southwest University of Science and Technology Funds for Doctors No.08ZX0108.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I1/67

1 A.Zabett, A.Plumtree, Microstructural effects on the small fatigue crack behavior of an aluminum alloy plate, Fatigue and Fract. of Engng. Mater. and Struc., 18, 8019(1995)

2 C.Q.Bowles, J.Schijve, The role of inclusions in fatigue crack initiation in an aluminum alloy, International J. of fatigue, 9, 171(1973)

3 J.C.Grosskreutz, G.G.Shaw, Critical Mechanisms in the Development of Fatigue Cracks in 2024–T4 Aluminum, 1968.

4 C.Y.Kung, M.E.Fine, Fatigue crack initiation and microcrack growth in 2024–T4 and 2124–T4 aluminum alloys, Metallurgical Transactions, 10(A), 603(1979)

5 E.A.DeBartolo, B.M.Hillberry, Characterization of fatigue crack nucleation sites in 2040–T3 aluminum alloy, Fatigue99; Proceedings of the Seventh International Fatigue Congress, (Beijing, China, 1999)

6 J.C.Newman, Fracture mechanics parameters for small fatigue cracks, In: Small Crack Test Methods, ASTM STP 1149,edited by J. M. Larsen and J.E.Allison (American Society

for Testing and Materials, Philadelphia, 1992) p.6–33

7 J.C.Newman, P.R.Edwards, Short–Crack Growth Behavior in an Aluminum Alloy–An AGARD Cooperative Test Programme, AGARD 732, Dec. 1988.

8 Ali Merati, A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024–T3, International Journal of Fatigue, 27, 33(2005)

9 T.S.Srivatsan, D.Kolar, P.Magnusen, The cyclic fatigue and final fracture behavior of aluminum alloy 2524, Materials and Design, 23, 129(2003)

10 T.S.Srivatsan, D.Kolar, P.Magnusen, Influence of temperature on cyclic stress response, strain resistance and fracture behavior of aluminum alloy 2524, Materials Science and Engng., A314, 118(2001)

11 P.J.Golden, A.F.Grandt Jr., G.H.Bray, A comparison of fatigue crack formation at holes in 2024–T3 and 2524–T3 aluminum alloy specimens, International J.of Fatigue, 21, 211(1999)

12 A.F.Grandt, D.G.Sexton Jr., P.J.Golden, A comparison of 2024–T3 and 2524–T3 aluminum alloys under multi–site damage scenarios, in: Proceedings of the 19th Symposium of the International Committee on Aeronautical Fatigue, edited by R.Cooke and P.Poole (Edinburgh. Scotland. 1997) p.659–669

13 T.Li, Z.G.Chen, High cycle fatigue properties of an 2524 Al alloy in four–point bend, in: Proceedings of ICHMM2008 (Huangshan, China, 2008)

14 T.Zhai, Y.G.Xu, J.W.Martin, A.J.Wilkinson, G.A.D.Briggs, A self–aligning four–point bend testing rig and sample geometry effect in four–point bend fatigue, Int. J. Fatigue, 21, 889(1999)

15 LI Tang, Investigation on fatigue behavior of 2000 series high strength aluminum alloys, Ph.D thesis, Sichuan University (2008)

(李棠, 2XXX系列高强铝合金疲劳行为的研究, 四川大学博士论文(2008))

16 Metals Handbook, 9th ed., Metallography and Microstructures, Vol.9 (Materials Park, OH: ASM Int., 1985) p.355–357

17 R.Hutchinson, S.P.Ringer, Metall. Mater. Trans. A, 31, 2731(2000)

18 L.M.Wang, H.M.Flower, T.C.Lindley, Precipitation of the Omega phase in 2024 and 2124 aluminum alloys, Scr. Mater., 41, 391(1999)

19 B.Q.Li, F.E.Wawner, Dislocation interaction with semicoherent precipitates (Ω phase) in deformed Al–Cu–Mg–Ag alloy, Acta Mater., 46, 5483(1998)

20 L.F.Mondolfo, Aluminum Alloys, Structure and Properties (Butterworths, Boston, 1976) p.842
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] HUANG Yaqi, WANG Dong, LU Yuzhang, XIONG Ying, SHEN Jian. Fatigue Crack Initiation Behavior at Intermediate Temperature under High Stress Amplitude for Single Crystal Superalloy DD413[J]. 材料研究学报, 2021, 35(7): 510-516.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] LIU Xiaoyan, LIU Kuijun, YANG Xirong, WANG Jingzhong, LUO Lei. Fatigue Crack Propagation Behavior of Ultrafine Grained Pure Titanium[J]. 材料研究学报, 2020, 34(6): 417-424.
[8] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[9] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[10] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[11] LIANG Enquan, HUANG Sensen, MA Yingjie, ZHANG Ren, LEI Jiafeng, LIU Yang. The Influence of Fe on the Mechanical Properties of Ti-6Al-4V ELI Alloy[J]. 材料研究学报, 2016, 30(4): 299-306.
[12] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[13] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
[14] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
[15] Xiaogang WANG,Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. 材料研究学报, 2014, 28(4): 308-313.
No Suggested Reading articles found!