Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (7): 509-514    DOI: 10.11901/1005.3093.2014.026
Current Issue | Archive | Adv Search |
Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy
Yang CHEN1,2,Cheng QIAN1,Zhitang SONG2,3,**(),Guoquan MIN2
1. Department of Material Science and Engineering, Changzhou University, Changzhou 213164
2. Shanghai Nanotechnology Promotion Center, Shanghai 200237
3. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
Cite this article: 

Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy. Chinese Journal of Materials Research, 2014, 28(7): 509-514.

Download:  HTML  PDF(3171KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The monodispersed polystyrene (PS) particles with the size of 200-500 nm were prepared via a soap-free emulsion polymerization method. The as-synthesized PS microspheres were immobilized on a rigid substrate surface through the attraction between the negative-charged silica and the positive-charged PS. The mechanical properties of the as-synthesized PS microspheres were measured by a Peak Force tapping atomic force microscope. The compressive Young’s moduli (E) of 2-3 GPa (Hertz’s model) and 2-6 GPa (Sneddon’s model) were calculated by the analysis of the force-displacement curves captured on the top of the PS particles. The moduli were slightly less than that of PS bulk materials, and the E values increased slowly with an increase of the size of the PS particles. In addition, the Hertz’s model might be more suitable to calculate the E of the obtained samples than the Sneddon’s model.

Key words:  foundational discipline in materials science      polystyrene microspheres      atomic force microscope      compressive Young’s modulus      Hertz’s model      Sneddon’s model     
Received:  13 January 2014     
Fund: *Supported by National Natural Science Foundation of China No. 51205032, the Natural Science Foundation of Jiangsu Province of China No. BK2012158, the Shanghai Municipal Natural Science Foundation No. 13ZR1436700 and China Postdoctoral Science Foundation No. 2013M541535.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.026     OR     https://www.cjmr.org/EN/Y2014/V28/I7/509

Fig.1  Typical SEM images of PS colloid particle samples obtained with different PVP concentrations (a) blank, (b) 0.04 mmol/L, (c) 0.5mmol/L , (d) 0.8 mmol/L
Fig.2  Typical AFM images of PS200 (a) and PS350 (b) particles deposited on a substrate
Fig.3  Schematic drawing for the relative displacement and deformation of the particle-AFM tip-sample
Fig.4  Schematic drawing for the Hertz (a) and the Sneddon (b) contact model
Fig.5  Force-displacement curves and force-separation curves (inset) of PS200 (a) and PS250 (b) samples
Samples Hertz's model Sneddon's model
E / GPa
PS200 2.01±0.70 2.73±1.25
PS250 2.13±0.81 2.97±1.51
PS350 2.52±0.52 3.63±1.01
PS450 2.90±0.46 6.13±1.70
Table1  Compressive Young's modulus for PS microsphere samples
1 MA Guanghui, SU Zhiguo, Polymer Microsphere Materials (Beijing, Chemical Industry Press, 2005) p.1
1 (1)
2 R. Takekoh, W. Li, N. A. D. Burke, H. D. H. St?ver,Multilayered polymer microspheres by thermal imprinting during microsphere growth, J. Am. Chem. Soc., 128(1), 240(2006)
3 X. Li, Q. Zhao, T. Xu, J. Huang, L. Wei, Z. Ma,Highly ordered microporous polystyrene-b-poly(acrylic acid) films: Study on the influencing factors in their fabrication via a static breath-figure method, Eur. Polym. J., 50, 135(2014)
4 D. Ge, L. Yang, Z. Tong, Y. Ding, W. Xin, J. Zhao, Y. Li,Ion diffusion and optical switching performance of 3D ordered nanostructured polyaniline films for advanced electrochemical/electrochromic devices, Electrochim. Acta, 104, 191(2013)
5 T. Kobayashi, T. Endo, T. Nagase, S. Murakami, H. Naito,Third-order optical susceptibility of ordered and disordered polyfluorene thin films, J. Non-Cryst. Solids, 358(17), 2530(2012)
6 F. Xue, H. Li, L. An, S. Jiang,Constructional details of polystyrene-block-poly (4- vinylpyridine) ordered thin film morphology, J. Colloid Interface Sci., 399, 62(2013)
7 BAI Maosen,Theory and system study of laser generated surface acoustic wave method for film’s Young’s modulus measurement, PhD Dissertation, Tianjin University, 2011
7 (白茂森, 激光声表面波法测量薄膜杨氏模量的理论与系统研究, 博士学位论文, 天津大学, 2011)
8 S. Biggs, G. Spinks,Atomic force microscopy investigation of the adhesion between a single polymer sphere and a flat surface, J. Adhes. Sci. Technol., 12(5), 461(1998)
9 H. P. Wampler, A. Ivanisevic,Nanoindentation of gold nanoparticles functionalized with proteins, Micron, 40(4), 444(2009)
10 S. Armini, I. U. Vakarelski, C. M. Whelan, K. Maex, K. Higashitani,Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by atomic force microscopy, Langmuir, 23(4), 2007(2007)
11 P. Paik, K. K. Kar, D. Deva, A. Sharma,Measurement of mechanical properties of polymer nanospheres by atomic force microscopy: effects of particle size, Micro Nano Lett., 2(3), 72(2007)
12 Y. Chen, J. Lu, Z. Chen,Young’s modulus of PS/CeO2 composite with core/shell structure microspheres measured using atomic force microscopy, J. Nanopart. Res., 14(2), 696(2012)
13 S. Tan, R. L. Sherman, W. T .Ford,Nanoscale compression of polymer microspheres by atomic force microscopy, Langmuir, 20(17), 7015(2004)
14 C. Graf, D. L. J. Vossen, A. Imhof, A. van Blaaderen,A general method to coat colloidal particles with silica, Langmuir, 19(17), 6693(2003)
15 M. Chen, S. Zhou, L. Wu, S. Xie, Y. Chen,Preparation of silica-coated polystyrene hybrid spherical colloids, Macromol. Chem. Phys., 206(18), 1896(2005)
16 ZHANG Wanxi,SUN Guoen, YAO Weiguo, LI Quanming, DOU Yanli, Progress in fabrication of organic super film using layer-by-layer self-assembly, Polymer Materials Science and Engineering, 25(2), 167(2009)
16 (张万喜, 孙国恩, 姚卫国, 李全明, 窦艳丽, 利用层层组装的方法制备有机超薄膜的研究进展, 高分子材料科学与工程, 25(2), 167(2009))
17 D. Guo, G. Xie, J. Luo,Mechanical properties of nanoparticles: basics and applications, J. Phys. D Appl. Phys., 47(1), 013001(2014)
18 H. Hertz,On the contact of elastic solids, J. Reine Angew. Math., 92, 156(1881)
19 K. L. Johnson, K. Kendall, A. D. Roberts. Surface energy the contact of elastic solids[J]. Proceedings of the Royal Society of London, 1971, 324: 301-313
20 B. V. Derjaguin, V. M. Muller, Y. P. Toporov,Effect of contact deformations on the adhesion of particles, J. Colloid Interface Sci., 53(2), 314(1975)
21 S. A. Chizhik, Z. Huang, V. V. Gorbunov, N. K. Myshkin, V. V. Tsukruk,Micromechanical properties of elastic polymeric materials as probed by scanning force microscopy, Langmuir, 14(10), 2606(1998)
22 J. E. Mark, Polymer Data Handbook (Oxford, Oxford University Press, 1999) p.830,832, 963
23 G. V. Lubarsky, M. R. Davidson, R. H. Bradley,Elastic modulus, oxidation depth and adhesion force of surface modified polystyrene studied by AFM and XPS, Surf. Sci., 558(1-3), 135(2004)
24 M. del P.Buera, G. Levi, M. Kare,Glass transition in Poly(vinylpyrro1idone): Effect of molecular weight and dluents, Biotechnol. Prog., 8, 144(1992)
25 T. B. Karim, G. B. McKenna,Comparison of surface mechanical properties among linear and star polystyrenes: Surface softening and stiffening at different temperatures, Polymer, 54(21), 5928(2013)
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[6] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[7] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[8] YANG Ming, FAN Hongyu, XIE Xiaodong, GUO Yiming, LIU Yunhe, LI Kun. Effect of High Energy W6+ Pre-implantation on Surface Microstructure of Tungsten Irradiated by Low-energy Hydrogen Ions[J]. 材料研究学报, 2016, 30(4): 277-284.
[9] Ying YANG,Yan ZHAO,Yukun YAN,Jinsong ZHANG. AgCl Nano-cubics Used as Photoinitiator for Polymerizing Monodispersed Polystyrene Microspheres[J]. 材料研究学报, 2016, 30(11): 868-874.
[10] Kefei LIU,Jiayu ZHENG,Kang JIANG. Moisture Induced Damage of Various Asphalt Binders[J]. 材料研究学报, 2016, 30(10): 773-780.
[11] Kefei LIU,Chaofan WU. Evaluation Method for Compatibility of Sasobit Warm Mix Asphalt Binder[J]. 材料研究学报, 2015, 29(9): 707-713.
[12] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[13] Ping LU,Xiao CHEN,Ming YANG. Preparation of Ag-glass Fiber Composite by Plasma Treatment-continuous Immersion[J]. 材料研究学报, 2015, 29(1): 45-50.
[14] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
[15] Xiaogang WANG,Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. 材料研究学报, 2014, 28(4): 308-313.
No Suggested Reading articles found!