Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (6): 417-424    DOI: 10.11901/1005.3093.2019.492
ARTICLES Current Issue | Archive | Adv Search |
Fatigue Crack Propagation Behavior of Ultrafine Grained Pure Titanium
LIU Xiaoyan(), LIU Kuijun, YANG Xirong, WANG Jingzhong, LUO Lei
School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Cite this article: 

LIU Xiaoyan, LIU Kuijun, YANG Xirong, WANG Jingzhong, LUO Lei. Fatigue Crack Propagation Behavior of Ultrafine Grained Pure Titanium. Chinese Journal of Materials Research, 2020, 34(6): 417-424.

Download:  HTML  PDF(2281KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Four kinds of ultrafine grained (UFG) pure titanium were obtained by two-pass equal channel angular pressing (ECAP) at room temperature, ECAP+rotary swaging (RS) and ECAP+RS followed by annealing at 300℃ and 400℃ for 1 h, respectively. The fatigue crack growth tests of different UFG pure titanium were carried out, while their microstructure, the fatigue fracture morphology and the crack growth behavior were investigated by TEM and SEM. Results show that the microstructure has a significant effect on the threshold of fatigue crack growth rate and the near threshold zone of UFG pure titanium. The threshold values of fatigue crack growth rate for UFG pure titanium increase with the increase of strain, and decrease with the increase of annealing temperature after RS. The turning point occurs in the fatigue crack growth rate curve, which is affected by grain size and strength of UFG pure titanium. Before the turning point, UFG pure titanium produced by ECAP+RS has stronger resistance to fatigue crack growth than that produced only by ECAP, and the resistance to fatigue crack growth of UFG pure titanium after ECAP+RS decreases with the increase of annealing temperature. After the turning point, the fatigue crack growth rates of four kinds of UFG pure titanium are slightly different and the opposite result is presented. The threshold value before the turning point and the growth rate of the near threshold zone may play much important role in enhancing the resistance to the crack growth because the growth life of the crack of the near threshold zone before the turning point accounts for a very large part of the fatigue crack growth life.

Key words:  metallic materials      UFG pure titanium      fatigue crack growth      microstructure      fatigue fracture     
Received:  23 October 2019     
ZTFLH:  TG146.2+3  
Fund: National Natural Science Foundation of China(51474170);Special Project of Education Department(Z20190246)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.492     OR     https://www.cjmr.org/EN/Y2020/V34/I6/417

CHONFeTi
<0.08<0.015<0.18<0.03<0.2Bal.
Table 1  Chemical composition of pure titanium (%, mass fraction)
Fig.1  Geometry of specimen for crack propagation tests (unit: mm)
Fig.2  Microstructures of UFG pure titanium (a) ECAP; (b) ECAP+RS; (c) annealing at 300℃ after ECAP+RS; (d) annealing at 400℃ after ECAP+RS
MaterialsYS/MPaUTS/MPaδ/%
As-received32747933.5
ECAP52565815.8
ECAP+RS77491012.9
Annealing at 300℃ after ECAP+RS74687114
Annealing at 400℃ after ECAP+RS62578019
Table 2  Mechanical properties of UFG pure titanium
Fig.3  Fatigue crack growth curves (a) ECAP and ECAP+RS; (b) ECAP+RS and annealing state; (c) summary of fatigue crack growth rates of four kinds of UFG pure titanium
Materials

Kth

/MPa?m1/2

Kth, crit

/MPa?m1/2

ECAP6.810.69
ECAP+RS9.611.71
Annealing at 300℃ after ECAP+RS9.211.26
Annealing at 400℃ after ECAP+RS7.310.65
Table 3  Parameter values of crack propagation in UFG pure titanium
Fig.4  Extended path and macroscopic fracture of UFG pure titanium (a) crack path; (b) macro fracture surface
Fig.5  Fracture morphology of UFG pure titanium (a, d, g, j) near threshold region; (b, e, h, k) stable growth region; (c, f, i, l) at ending stage. Note that (a~c) ECAP, (d~f) ECAP+RS, (g~i) 300℃, (j~l) 400℃
[1] Shin M H, Baek S M, Polyakov A V, et al. Molybdenum disulfide surface modification of ultrafine-grained titanium for enhanced cellular growth and antibacterial effect [J]. Sci. Rep., 2018, 8: 9907
doi: 10.1038/s41598-018-28367-0 pmid: 29967339
[2] Wang M, Yang Y Q, Luo X. Research status in preparation and properties of uitra-fine grained Ti alloys [J]. Mater. Rep., 2013, 27(13): 94
(王苗, 杨延清, 罗贤. 超细晶钛合金的制备及性能研究现状 [J]. 材料导报, 2013, 27(13): 94)
[3] Torre F D, Lapovok R, Sandlin J, et al. Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes [J]. Acta Mater., 2004, 52: 4819
doi: 10.1016/j.actamat.2004.06.040
[4] Stolyarov V V, Zhu Y T, Alexandrov I V, et al. Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling [J]. Mater. Sci. Eng., 2003, 343A: 43
[5] Stolyarov V V, Zeipper L, Mingler B, et al. Influence of post-deformation on CP-Ti processed by equal channel angular pressing [J]. Mater. Sci. Eng., 2008, 476A: 98
[6] Yin Z P. Structural Fatigue and Fracture [M]. Xi’an: Northwestern Polytechnical University Press, 2012
(殷之平. 结构疲劳与断裂 [M]. 西安: 西北工业大学出版社, 2012)
[7] Vinogradov A. Fatigue limit and crack growth in ultra-fine grain metals produced by severe plastic deformation [J]. J. Mater. Sci., 2007, 42: 1797
doi: 10.1007/s10853-006-0973-z
[8] Cavaliere P. Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals [J]. Int. J. Fatigue, 2009, 31: 1476
doi: 10.1016/j.ijfatigue.2009.05.004
[9] Qi W, Sun Q Y, Lin X, et al. Effect of surface nanocrystallization on fatigue behavior of pure titanium [J]. J. Mater. Eng. Perform., 2016, 25: 241
doi: 10.1007/s11665-015-1819-0
[10] Hyun C Y, Kim H K. Fatigue crack growth of ultrafine grained pure ti after severe plastic deformation [J]. Solid State Phenom, 2007, 124-126: 1385
doi: 10.4028/www.scientific.net/SSP.124-126
[11] Fintová S, Arzaghi M, Kuběna I, et al. Fatigue crack propagation in UFG Ti grade 4 processed by severe plastic deformation [J]. Int. J. Fatigue, 2017, 98: 187
doi: 10.1016/j.ijfatigue.2017.01.028
[12] Wang T B, Li B L, Li Y C, et al. High-speed deformation response of dislocation boundaries in commercially pure titanium [J]. Rare Met. Mater. Eng., 2017, 46: 1380
(王同波, 李伯龙, 李颖超等. 工业纯钛位错界面的高速形变响应 [J]. 稀有金属材料与工程, 2017, 46: 1380)
[13] Wang Y B, Ho J C, Cao Y, et al. Dislocation density evolution during high pressure torsion of a nanocrystalline NiFe alloy [J]. Appl. Phys. Lett., 2009, 94: 191
[14] Zhu L W, Wang X N, Zhu Z S, et al. Near-threshold fatigue crack propagation behavior of TC4-DT damage tolerance titanium alloys [J]. Rare Met. Mater. Eng., 2014, 43: 1342
(祝力伟, 王新南, 朱知寿等. 损伤容限型TC4-DT钛合金近门槛区疲劳裂纹扩展行为研究 [J]. 稀有金属材料与工程, 2014, 43: 1342)
[15] Li J, Zhu Z S, Wang X N, et al. Fatigue crack propagation behavior of TC4-DT alloy with quasi-β heat treatment [J]. Chin. J. Rare Met., 2017, 41: 745
(李静, 朱知寿, 王新南等. 准β热处理工艺对TC4-DT钛合金裂纹扩展行为的影响 [J]. 稀有金属, 2017, 41: 745)
[16] Qian C F, Li H F, Cui W Y. Mode I crack tip plastic zone, dislocation-free zone and their effects on crack propagation [J]. Chin. J. Mater. Res., 2007, 21: 599
(钱才富, 李慧芳, 崔文勇. I型裂纹尖端塑性区和无位错区及其对裂纹扩展的影响 [J]. 材料研究学报, 2007, 21: 599)
[17] Zhang S F, Zeng W D, Long Y, et al. Fatigue crack growth of TC17 titanium alloy with three microstructures [J]. Rare Met. Mater. Eng., 2018, 47(12): 167
(张赛飞, 曾卫东, 龙雨等. 三种组织TC17合金的疲劳裂纹扩展行为 [J]. 稀有金属材料与工程, 2018, 47(12): 167)
[18] Zerbst U, Vormwald M, Pippan R, et al. About the fatigue crack propagation threshold of metals as a design criterion-A review [J]. Eng Fract Mech, 2016, 153: 190
doi: 10.1016/j.engfracmech.2015.12.002
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!