Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (1): 50-56    DOI: 10.11901/1005.3093.2019.293
ARTICLES Current Issue | Archive | Adv Search |
Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers
LU Xiaoqing(),ZHANG Quande,WEI Shuxian
China University of Petroleum, Qingdao 266580, China
Cite this article: 

LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers. Chinese Journal of Materials Research, 2020, 34(1): 50-56.

Download:  HTML  PDF(3374KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on the concept of modification of molecular skeleton structure, a series of (acceptor-π-donor-π-acceptor) A-π-D-π-A type indole-based metal-free organic dye sensitizers were designed, and their photoelectric conversion behavior and the relevant electronic transmission mechanisms were theoretically investigated by using density functional theory and the time-dependent density functional theory. Results show that compared with the traditional D-π-A molecular skeleton structure the overall performance of A-π-D-π-A type indole-based organic dye sensitizers was significantly improved in terms of the appropriate energy level structure and orbital electron distribution, broadened spectral absorption coverage range, improved light-harvesting efficiency and enhanced IET performance. At the same time, it should be noted that the enhancement of electron-deficient properties of the π-bridge could further enhance the properties of A-π-D-π-A type indole-based metal-free organic dye sensitizers.

Key words:  foundational discipline in materials science      indole-based dye sensitizers      density functional theory      photoelectric conversion      electronic transmission     
Received:  10 June 2019     
ZTFLH:  TK519  
Fund: Natural Science Foundation of Shandong Province(ZR2017MA024);Natural Science Foundation of Shandong Province(ZR2019MEM005);Fundamental Research Funds for the Central Universities(18CX02042A);Fundamental Research Funds for the Central Universities(18CX07002A);Fundamental Research Funds for the Central Universities(18CX05011A);Postgraduate’s Innovation Project(YCX-2019092)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.293     OR     https://www.cjmr.org/EN/Y2020/V34/I1/50

Fig.1  Molecular structures of all A-π-D-π-A dyes
Fig.2  Electron contributions of the FMOs of studied sensitizers
Fig.3  First three energy levels and ΔH-L of studied sensitizers
Fig.4  Simulated absorption spectra of studied A-π-D-π-A sensitizers
Dyesλmax/nmEV/eVfLHEmaxRLHECompositions
QX02462.12.681.40196.0%1.00H→L(62%)
1463.62.672.79399.9%1.04H→L(56%), H→L+1(11%)
2476.22.603.43399.9%1.04H→L(53%), H→L+1(13%)
3544.02.283.46699.9%1.04H→L(55%), H-1→L+1(12%)
4462.82.753.04999.9%1.04H-1→L(54%), H-1→L+1(13%)
5469.12.653.86299.9%1.04H-1→L(56%), H-1→L+1(10%)
6524.52.363.89399.9%1.04H-1→L(53%),H-1→L+1(11%)
Table 1  Excitation energies (EV, eV), absorption intensities (?), relative orbital contributions, and LHEmax and RLHE for the optical transition of all dyes sensitizers
Fig.5  LHE spectra of all studied metal-free organic sensitizers
Fig.6  Charge density difference between the ground and excited state of dyes
Dyesλ/nmqET/edET/nmH/nmt/nmλv/eVkET/fs-1
QX02462.10.9710.59970.43960.16010.9353.08
1463.60.9920.79200.65970.13230.9283.15
2476.21.0430.81510.69930.11580.9563.00
3544.01.1620.87890.76780.11110.9493.04
4462.81.0000.75090.61760.13330.9652.97
5469.11.0700.75750.63620.12130.9203.28
6524.51.1720.79100.67951.1150.09143.48
Table 2  IET parameters of all studied metal-free organic sensitizers
[1] Hagfeldt A, Boschloo G, Sun L, et al. Dye-sensitized solar cells [J]. Chemical Reviews, 2010, 110(11): 6595
[2] Yella A, Mai C L, Zakeeruddin S M, et al. Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells: The role of benzene spacers [J]. Angewandte Chemie International Edition, 2014, 53(11): 2973
[3] Yang J, Ganesan P, Teuscher J, et al. Influence of the donor size in D-π-A organic dyes for dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2014, 136(15): 5722
[4] Zhou N, Prabakaran K, Lee B, et al. Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2015, 137(13): 4414
[5] Yao Z, Zhang M, Wu H, et al. Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2015, 137(11): 3799
[6] Huckaba A J, Yella A, Brogdon P, et al. A low recombination rate indolizine sensitizer for dye-sensitized solar cells [J]. Chemical Communications, 2016, 52(54): 8424
[7] Qian X, Shao L, Li H, et al. Indolo [3, 2-b] carbazole-based multi-donor-π-acceptor type organic dyes for highly efficient dye-sensitized solar cells [J]. Journal of Power Sources, 2016, 319: 39
[8] Zhu W, Wu Y, Wang S, et al. Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response [J]. Advanced Functional Materials, 2011, 21(4): 756
[9] Hailu Y M, Nguyen M T, Jiang J C. Effects of the terminal donor unit in dyes with D-D-π-A architecture on the regeneration mechanism in DSSCs: a computational study [J]. Physical Chemistry Chemical Physics, 2018, 20(36): 23564
[10] Zhang M D, Xie H X, Ju X H, et al. D-D-π-A organic dyes containing 4, 4'-di (2-thienyl) triphenylamine moiety for efficient dye-sensitized solar cells [J]. Physical Chemistry Chemical Physics, 2013, 15(2): 634
[11] Liu X, Cao Z, Huang H, et al. Novel D-D-π-A organic dyes based on triphenylamine and indole-derivatives for high performance dye-sensitized solar cells [J]. Journal of Power Sources, 2014, 248: 400
[12] Dai X X, Feng H L, Huang Z S, et al. Synthesis of phenothiazine-based di-anchoring dyes containing fluorene linker and their photovoltaic performance [J]. Dyes and Pigments, 2015, 114: 47
[13] Murali M G, Wang X, Wang Q, et al. New banana shaped A-D-π-D-A type organic dyes containing two anchoring groups for high performance dye-sensitized solar cells [J]. Dyes and Pigments, 2016, 134: 375
[14] Andersson M P, Uvdal P. New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G (d, p) [J]. The Journal of Physical Chemistry A, 2005, 109(12: 2937
[15] Curtiss L A, Raghavachari K, Redfern P C, et al. Investigation of the use of B3LYP zero-point energies and geometries in the calculation of enthalpies of formation [J]. Chemical Physics Letters, 1997, 270(5-6): 419
[16] Yanai T, Tew D P, Handy N C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP) [J]. Chemical Physics Letters, 2004, 393(1-3): 51
[17] Petersson G A, Tensfeldt T G, Montgomery J A. A complete basis set model chemistry. III. The complete basis set—quadratic configuration interaction family of methods [J]. The Journal of Chemical Physics, 1991, 94(9): 6091
[18] Cossi M, Barone V. Time-dependent density functional theory for molecules in liquid solutions [J]. The Journal of Chemical Physics, 2001, 115(10): 4708
[19] Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model [J]. The Journal of Physical Chemistry A, 1998, 102(11): 1995
[20] Jacquemin D, Wathelet V, Perpete E A, et al. Extensive TD-DFT benchmark: singlet-excited states of organic molecules [J]. Journal of Chemical Theory and Computation, 2009, 5(9): 2420
[21] Jacquemin D, Perpete E A, Scuseria G E, et al. TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids [J]. Journal of Chemical Theory and Computation, 2008, 4(1): 123
[22] Le Bahers T, Pauporté T, Scalmani G, et al. A TD-DFT investigation of ground and excited state properties in indoline dyes used for dye-sensitized solar cells [J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11276
[23] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, revision D. 01 [CP]. New York: Gaussian Inc, Wallingford C T, 2009
[24] Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer [J]. Journal of Computational Chemistry, 2012, 33(5): 580
[25] Santhanamoorthi N, Lo C M, Jiang J C. Molecular design of porphyrins for dye-sensitized solar cells: a DFT/TDDFT study [J]. The Journal of Physical Chemistry Letters, 2013, 4(3): 524
[26] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes [J]. Journal of the American Chemical Society, 1993, 115(14): 6382
[27] He L J, Chen J, Bai F Q, et al. The influence of a dye-TiO2 interface on DSSC performance: a theoretical exploration with a ruthenium dye [J]. RSC Advances, 2016, 6(85): 81976
[28] Lu T F, Li W, Bai F Q, et al. Anionic ancillary ligands in cyclometalated Ru (II) complex sensitizers improve photovoltaic efficiency of dye-sensitized solar cells: insights from theoretical investigations [J]. Journal of Materials Chemistry A, 2017, 5(30): 15567
[29] Nalwa H. S. Handbook of Advanced Electronic and Photonic Materials and Devices: Conducting Polymers [M]. USA: Academic Press, 2001
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] LIU Yu, LIANG Zhiqi, ZHAO Song, CHANG Chunrui. Experiment and First-principles Calculation on Effect of Carbon Nanotubes Doping on Physical Parameters and Display Properties of Liquid Crystal[J]. 材料研究学报, 2022, 36(6): 425-434.
[5] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[6] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[7] Junkai WANG, Yuanzhuo ZHANG, Saisai LI, Shengtao GE, Jianbo SONG, Haijun ZHANG. Catalytic Carbothermal Reduction Synthesis and Mechanism of 3C-SiC from Diatomite with Fe as Catalyst[J]. 材料研究学报, 2018, 32(10): 767-774.
[8] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[9] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[10] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
[11] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
[12] Xiaogang WANG,Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. 材料研究学报, 2014, 28(4): 308-313.
[13] Wu YAO,Mengxue WU,Yongqi WEI. Determination of Reaction Degree of Silica Fume and Fly Ash in a Cement - silica fume - fly ash Ternary Cementitious System[J]. 材料研究学报, 2014, 28(3): 197-203.
[14] Ruwu WANG,Jing LIU,Zhanghua GAN,Chun ZENG,Fengquan ZHANG. Crystallization Kinetics of Amorphous Alloys Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)[J]. 材料研究学报, 2014, 28(3): 204-210.
[15] Lei LI,Ke QIN,Haitao ZHANG,Zhihao ZHAO,Qingfeng ZHU,Yubo ZUO,Jianzhong CUI. Crystallographic Features of a Solidified Hypoeutectic Zn-4.45%Al Alloy[J]. 材料研究学报, 2014, 28(2): 126-132.
No Suggested Reading articles found!