Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (4): 299-306    DOI: 10.11901/1005.3093.2015.353
Orginal Article Current Issue | Archive | Adv Search |
The Influence of Fe on the Mechanical Properties of Ti-6Al-4V ELI Alloy
LIANG Enquan1, HUANG Sensen2,3, MA Yingjie3,*(), ZHANG Ren1, LEI Jiafeng3, LIU Yang1
1. Shanghai Aircraft Design and Research Institute, Commercial Aircraft Corporation of China, Ltd, Shanghai 200232, China
2. Institute of Material and Metallurgy, Northeast University, Shenyang 110819, China
3. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

LIANG Enquan, HUANG Sensen, MA Yingjie, ZHANG Ren, LEI Jiafeng, LIU Yang. The Influence of Fe on the Mechanical Properties of Ti-6Al-4V ELI Alloy. Chinese Journal of Materials Research, 2016, 30(4): 299-306.

Download:  HTML  PDF(4392KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of different Fe contents (0.03%, 0.17%, 0.24%) on the mechanical properties of Ti-6Al-4V ELI (TC4 ELI) alloy was studied. The microstructures were characterize by using EBSD, and the tensile properties, fracture toughness and fatigue crack growth rates (da/dN), creep properties of TC4 ELI with three Fe contents were compared and analyzed. The results showed that with the increase of Fe contents, Fe has no apparent influence on fracture toughness, however, tensile strength of the alloy was improved. The da/dN of the three TC4 ELI alloys were found to be almost identical at room temperature and 200℃, however da/dN was found to be marginally faster as Fe contents increased at 400℃. Within the range of 250~350℃, Fe improved creep resistance, while from 350℃ to 400℃, Fe had opposite effect. Fe atom was mainly enriched in β phase. And the tensile strength was improved with the increase of Fe contents due to the solid solution strengthening effect. Because of the high diffusing rates of Fe atom under the condition of 400℃, the movement of matrix atoms and interfaces were accelerated. So that, the resistance to dislocation motion in crack tip plastic zone was reduced, which led to higher da/dN. Under the condition of 350-400℃, Fe could improve the creep rate by speeding up the process of dislocation climbing, but the reinforcement is more important below 350℃ because of the weak diffusion.

Key words:  metallic materials      Ti-6Al-4V ELI      Fe content      fracture toughness      fatigue crack growth      creep     
Received:  24 June 2015     
ZTFLH:  TG146  
About author:  To whom correspondence should be addressed, Tel: 13840026329, E-mail: yjma@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.353     OR     https://www.cjmr.org/EN/Y2016/V30/I4/299

Sample Impurity Alloying element
Fe C N H O Al V Ti
No1 0.03 <0.01 <0.01 <0.001 0.06 6.00 4.14 Bal.
No2 0.17 <0.01 <0.01 <0.001 0.06 6.00 4.15 Bal.
No3 0.24 <0.01 <0.01 <0.001 0.06 5.99 4.14 Bal.
Table 1  The chemical compositions of three TC4ELI samples with different Fe contents (%, mass fraction)
Fig.1  Microstructures of three TC4 ELI alloys with different Fe contents, (a) No1, (b) No2, (c) No3
Fig.2  Crystal orientation distribution of No3 alloy
Fig.3  Statistical distribution of colony boundaries of No3 alloy
Fig.4  The content of Al, V, Fe in α/β phases of three TC4 ELI alloys, (a) No1 α phase, (b) No1 β phase, (c) No2 α phase, (d) No2 β phase, (e) No3 α phase, (f) No3 β phase
Fig.5  Line distribution of Fe content of No3 alloy
Sample Al V Fe
α β α β α β
No1 6.12 6.27 3.00 6.08 0.06 0.16
No2 6.31 6.47 3.71 5.91 0.23 0.58
No3 6.38 5.92 3.13 8.03 0.16 1.09
Table 2  Elements content in α/β phases of of TC4 ELI alloys with different Fe contents (%, mass fraction)
Fig.6  Tensile strength of TC4ELI alloys with different Fe contents at different temperatures
Sample PQ/ kN Pmax/ kN Kq/ MPam1/2
No1 66.6 72.4 116.3
No2 65.8 71.3 115.1
No3 66.1 71.3 115.5
Table 3  Fracture toughness of TC4ELI alloys with different Fe contents
Fig.6  Tensile strength of TC4ELI alloys with different Fe contents at different temperatures
Fig.7  da/dN curves of TC4ELI alloys with different Fe contents at room temperature
Fig.8  da/dN curves of TC4ELI alloys with different Fe contents at 200℃
Fig.9  da/dN curves of TC4ELI alloys with different Fe content at 400℃
Fig.10  Fracture morphology of crack propagation of TC4ELI alloys with different Fe contents at 400℃ (a) No1, (b) No2, (c) No3
Fig.11  Creep curves of No1 and No3 TC4 ELI alloys, (a) 400oC, (b) 350oC, (c) 300oC, (d) 250oC
Fig.12  Creep stress exponents of No1 and No3 TC4 ELI alloys at different temperatures, (a) 400oC, (b) 350oC, (c) 300oC, (d) 250oC
1 WANG Xin, LEI Jiafeng, MA Yingjie, LI Xiaoyan, WANG Jian, WANG Hongwu, Influence of heat-treatment on microstructure and mechanical properties of Ti-6Al-4V ELI plate, China Titanium Industry, (4), 23(2011)
(王新, 雷家峰, 马英杰, 李晓艳, 王俭, 王红武, 热处理对Ti-6Al-4V ELI钛合金厚板显微组织和力学性能的影响, 中国钛业, (4), 23(2011))
2 ZHU Zhishou, MA Shaojun, WANG Xinnan, TONG Lu, WU Xueren, ZHAO Yongqing, QU Henglei, Study on fatigue crack propagation rate of TC4-DT damage tolerance titanium alloy, Titanium Industry Progress, 22(6), 10(2005)
(朱知寿, 马少俊, 王新南, 童路, 吴学仁, 赵永庆, 曲恒磊, TC4-DT 损伤容限型钛合金疲劳裂纹扩展特性的研究, 钛工业进展, 22(6), 10(2005))
3 WANG Xinnan, ZHU Zhishou, TONG Lu, ZHOU Yu, ZHOU Xiaohu, YU Hanqing, The influence of forging processing on fatigue crack propagation rate of damage-tolerant titanium alloy, Rare Metals Letters, 27(7), 12(2008)
(王新南, 朱知寿, 童路, 周宇, 周晓虎, 俞汉清, 锻造工艺对TC4-DT和TC21 损伤容限型钛合金疲劳裂纹扩展速率的影响, 稀有金属快报, 27(7), 12(2008))
4 Xiao-na PENG, Hong-zhen GUO, Zhi-feng SHI, Chun QIN, Zhang-long ZHAO, Microstructure characterization and mechanical properties of TC4-DT titanium alloy after thermomechanical treatment, Transactions of Nonferrous Metals, Society, of China, (24), 682(2014)
doi: 10.1016/S1003-6326(14)63111-3
5 FANG Yajun, CAO Jimin, YANG Huabin, CHEN Zhihong, LI Lei, Effect of Fe content on mechanical properties of Ti-6Al-4V alloy, Heat Treatment of Metals, 38(3), 21(2013)
(樊亚军, 曹继敏, 杨华斌, 陈志宏, 李雷, Fe含量对Ti-6Al-4V钛合金力学性能的影响, 金属热处理, 38(3), 21(2013))
6 WU Huan, ZHAO Yongqing, GE Peng, ZHOU Wei, Effect of β stabilizing elements on the strengthening behavior of titanium α phase, Rare Metal Materials and Engineering, 41(5), 805(2012)
(吴欢, 赵永庆, 葛鹏, 周伟, β稳定元素对钛合金α相强化行为的影响, 稀有金属材料与工程, 41(5), 805(2012))
doi: 10.3969/j.issn.1002-185X.2012.05.012
7 LIAN Caihao, YANG Sheng, ZHOU Hui, TANG Renbo, LI Dan, Effect of alloying element (Nb, Ta, Fe and Zr) on microstructure and mechanical properties of biomedical titanium alloy, Hot Working Technology, 42(14), 40(2013)
(廉才浩, 杨胜, 周慧, 唐仁波, 李丹, 合金元素Nb, Ta, Fe, Zr对钛合金组织和性能的影响, 热加工工艺, 42(14), 40(2013))
8 CAI Jianming, MA Jimin, HUANG Xu, CAO Chunxiao, Diffusion behavior of impurity iron in high temperature titanium alloys and its detrimental effect on creep resistance, Journal of Materials Engineering, (8), 84(2009)
(蔡建明, 马济民, 黄旭, 曹春晓, 高温钛合金中杂质元素Fe的扩散行为及其对蠕变抗力的损害作用, 材料工程, (8), 84(2009))
9 HUANG Xinyue, ZHANG Shichao, LU Yuan, YU Huichen, Investigation on fatigue crack propagation behavior of TC11 and TC4 Ti alloys at room temperature and 400℃, Journal of Aeronautical Materials, 31(5), 82(2011)
(黄新跃, 张仕朝, 鲁原, 于慧臣, TC11和TC4钛合金室温/400℃疲劳裂纹扩展特性研究, 航空材料学报, 31(5), 82(2011))
10 WU Huan, ZHAO Yongqing, ZENG Weidong, State for fatigue crack propagation behavior and character of titanium alloy, Rare Metals Letters, 26(7), 1(2007)
(吴欢, 赵永庆, 曾卫东, 疲劳裂纹扩展行为的研究现状及钛合金的疲劳裂纹扩展特征, 稀有金属快报, 26(7), 1(2007))
doi: 10.3969/j.issn.1674-3962.2007.07.001
11 LIU Pengtao, ZHAO Xiujuan, LIU Xin, QI Jian, CHEN Chunhuan, WANG Yajun, REN Ruiming, Effects of hydrogen on fatigue crack propagation rate of TC4 alloy electron beam welded joint, Journal of Aeronautical Materials, 31(3), 52(2011)
(刘鹏涛, 赵秀娟, 刘昕, 齐健, 陈春焕, 王亚军, 任瑞铭, 氢对TC4钛合金电子束焊接头疲劳裂纹扩展速率的影响, 航空材料学报, 31(3), 52(2011))
12 Y. Mishin, Chr. Herzig, Diffusion in the Ti-Al System, Acta materialia, 48(3), 589(2000)
13 Gerd Lütjering, Titanium, (Germany, Springer, 2007) p.45-46
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!