Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (4): 424-428    DOI:
论文 Current Issue | Archive | Adv Search |
Synthesis and Adsorptive Removal for Uranium (VI) Ions of Titanate Nanotubes
CHANG Yang, ZHANG Linxi, LUO Mingbiao, LIAO Zhenwei, CHEN Zhongsheng
Department of Applied Chemistry, East China Institute of Technology, Fuzhou 344000
Cite this article: 

CHANG Yang ZHANG Linxi LUO Mingbiao LIAO Zhenwei CHEN Zhongsheng. Synthesis and Adsorptive Removal for Uranium (VI) Ions of Titanate Nanotubes. Chin J Mater Res, 2010, 24(4): 424-428.

Download:  PDF(878KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Titanate nanotubes have been synthesized by a hydrothermal method using tetrabutyl as titanium source. The prepared sodium titanate nanotubes were applied in the adsorption of uranium ions. The determination of the structure of the materials by TEM and XRD showed that titanate nanotubes compose of Na2Ti3O7 and H3Ti3O7 with external diameter of 8 nm, tube length up to 2 μm. The investigation of adsorption of uranium ions demonstrated that adsorption capacity growed gradually with the increase of temperature and shock time, and achieved maximum adsorption capacity at pH 5.5. The adsorption isotherm accorded with Langmuir and Freundlich matrix. Thermodynamic studies showed that the adsorption is endothermic spontaneous process. The recovery studies showed that the recovery graduately decrease with the increasing of uranium content. N2 adsorption/desorption tests found that the surface area of titanate nanotubes adsorbed uranium ions were smaller than previous.

Key words:  metallic materials        adsorption uranium        titanate nanotubes         hydrothermal method     
Received:  01 April 2010     
ZTFLH: 

TG146

 
Fund: 

Supported by National Defense Pre-Research Foundation of China No.A3420060146, National Natural Science Foundation of Jiangxi Province of China No.2007GZH216 and Youth Science Foundation of Educational Office of Jiangxi Province No.GJJ09527 and the Innovation Fund Project for Graduate Student of East China Institute of Technology No.DYCA10013.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I4/424

参考文献 [1] 袁涛, 王晓宇, 粟再新, 陈志. 核废物处理途径的探讨[J]. 核科学技术与工程, 2004, 4(10): 861–867. [2] Sridhar Komarneni, Rustum Roy, Use of Y–zirconium phosphate for Cs removal from radioactive waste, J. Nature, 1982, 299: 707. [3] Sridhar Komarneni, Rustum Roy,A Cesium-Selective Ion Sieve Made by Topotactic Leaching of Phlogopite Mica, J. Science 1988, 239: 1286–1288. [4 ] William J. Paulus, Sridhar Komarneni, Rustum Roy, Bulk synthesis and selective exchange of steontium ions in Na4 Mg 6Al4 Si4 O20 F4 mica , J. Nature11992, 357: 571–573. [5] May Nyman, Akhilesh Trioathi, John B. Parise, R.obert S. Maxwell, Tina M. Nenoff, Sandia octahedral molecular sieves(soms): structural and property effects of charge-balancing theMⅣ-Substituted(M=Ti, Zr) Niobate Framework, J. Am. Chem. Soc. 2002, 124: 1704. [6] Huai Yong Zhu, Xue Ping Gao, YingLan, De ying Song, Ying Xin Xi, Jin cai Zhao, Hydroden titanate nanofibers covered with anatase nanocrystals: a delicate structure achieved by the wet chemistry reaction of the titnate nanofibers, J. Am. chem. soc. 2004, 126: 8380 –8381. [7] Huai Yong Zhu, Ying Lan, Xue Ping Gao, Zhan Feng Zheng, De ying Song, Jin cai. Zhao, J. Am, chem. Soc. 2005, 127: 6730 – 6736. [8] Gil-Sung Kim, Young-Soon Kim,Hyung-Kee Seo and Hyung-ShikShi Hydrotherm alsynthesis of titanate nanotubes followed by electrodeposition process Korean J. Chem. Eng, 2006, 23 (6): 1037–1045. [9] 刘国宏, 张新荣, 朱永法. 纳米材料吸附剂的研究进展[J]. 分析化学, 2005, 33(12): 1787–1793. [10] Xing Wu, Qi-Zhong Jiang, Zi-Feng Ma, Min Fu, Wen-Feng Shangguan, Synthesis of titania nanotubes by microwave irradiation, Solid State Communications, 2005, 136: 513–517 [11] 龚强, 江志东, 田峰, 蒋淇忠, 马紫峰. 材料科学与工程学报, 2007, 25(1): 43–47. [12] Dong Jiang Yang, Zhan Feng Zheng, Huai Yong Zhu, *Hong Wei Liu,and Xue Ping Gao*, Adv.Mater. 2008, 20, 2777–2781. [13] 王美丽, 宋功保, 李健, 张宝述. 水热法制备钛酸盐纳米管研究进展[J]. 材料导报, 2006, 11 (20): 121–123. [14] Takayoshi Sasaki, Fathi Kooli, Masaki lida, Yuichi Michiue, Satoshi Takenouchi, Yoshiyuki Yajima, Fujio lzumi, Bryan C. Chakoumakos, and MamoruWatanabe, A Mixed Alkali Titanatewith the Lepidocrocite-like Layered Structure. Preparation, Crystal Structure, Protonic Form, and Acid-Base Intercalation Properties, J.Chem Mater, 1998, 10: 4123–4128.
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!