Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (4): 429-433    DOI:
论文 Current Issue | Archive | Adv Search |
The Different Effect of Sn and Te Substitution for Sb on Thermoelectric Properties of CrSb2
LI Haijin, ZHANG Qing, LIU Yi, SUN Wenbin
School of Mathematics and Physics, Anhui University of Technology, Ma’anshan 243002
Cite this article: 

LI Haijin ZHANG Qing LIU Yi SUN Wenbin. The Different Effect of Sn and Te Substitution for Sb on Thermoelectric Properties of CrSb2. Chin J Mater Res, 2010, 24(4): 429-433.

Download:  PDF(1018KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The different effect of Sn and Te substitution for Sb on thermoelectric properties of CrSb2 was investigated. The results show that the effect of lattice distortion after doping leads to the increase in the electron concentration of CrSb2. The substitution of Sn and Te for Sb can be regarded as p–doping and n–doping, respectively, the electron concentration of CrSb1.99Sn0.01 is smaller than that of CrSb1.99Te0.01 due to the compensation effect, leading to lesser decrease of resistivity and the absolute value of thermopower |S| for Sn doping than that of Te doping. Thermal conductivity of CrSb1.99Sn0.01 and CrSb1.99Te0.01 decreased after doping, which can be attributed to the enhancement of the phonon
scattering by impurity (Sn and Te, respectively) atoms, the atomic mass of Te is greater than that of Sn, the phonon scattering by impurity atoms is stronger, resulting in the more decrease of thermal conductivity for Te doping. As a result, the thermoelectric properties of CrSb2 was improved by Te doping, however, Sn doping did not meet the purpose of improving the performance of CrSb2. In addition, the Neel temperature does not change much after doping, which can be attributable to non-magnetic feature with full 3d orbits for Sn and Te.

Key words:  foundational discipline in materials science        CrSb2       resistivity        thermo-power        thermal conductivity     
Received:  15 April 2010     
ZTFLH: 

O482

 
  TB34

 
Fund: 

Supported by National Nature Science Foundation for Youths of China No. 50701043.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I4/429

参考文献: [1] F. J. DiSalvo, Thermoelectric Cooling and Power Generation, Science, 285, 703-706(1999) [2] G. S. Nolas, J. Sharp,and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, 1stedition, (Germany, Springer-Verlag Berlin Heidelberg. 2001) p.1-14. [3] H. Holseth, A. Kjekshus,Compounds with the Marcasite Type Crystal Structure. II. On the Crystal Structures of the Binary Pnictides,Acta Chemica Scandinavica, 22,3284-3292(1968) [4] Y. Takahashi, T. Harada, T. Kanomata, K. Koyama, H. Yoshida, T. Kaneko, M. Motokawa, M. Kataoka,Magnetoresistance effect of pseudobinary compounds Cr1-xRuxSb2,Journal of Alloys and Compounds, 459,78-82(2008) [5] T. Harada, T. Kanomata, Y. Takahashi, O. Nashima, H. Yoshida, T. Kaneko,Structural and electrical properties of Cr1-xRuxSb2,Journal of Alloys and Compounds, 383,200-204(2004) [6] K. Adachi, K. Sato, M. Matsuura, Magnetic Properties of CrSb2, Journal of the Physical Society of Japan, 26,906-910(1969) [7] John B. Goodenough, Energy Bands in TX2 Compounds with Pyrite, Marcasite, and Arsenopyrite Structures, Jounal of Solid State Chemistry, 5,144-152(1972) [8] H. Holseth, A. Kjekshus, Compounds with the Marcasite Type Crystal Structure: Ⅵ: Neutron Diffraction Studies of CrSb2 and FeSb2, Acta Chemica Scandinavica, 24, 3309-3316(1970) [9] 高敏,张景韶,[英]D. M. ROWE, 温差电转换及其应用, 第一版 (北京, 兵器工业出版社, 1996) [10] 阎守胜,固体物理基础,第三版(北京,北京大学出版社,2002) [11] K. Berggold, M. Kriener, C. Zobel, A. Reichl, M. Reuther, R. Müller, A. Freimuth, and T. Lorenz, Thermal conductivity, thermopower, and figure of merit of La1?xSrxCoO3, Physical Review B, 72,155116(2005)
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[6] LI Guipeng, SONG Guihong, HU Fang, DU Hao, YIN Lisong. Structure and Thermoelectric Properties of Ag-doped SnSe Thin Films Deposited by Magnetron Sputtering[J]. 材料研究学报, 2020, 34(8): 561-568.
[7] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[8] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[9] Xiaodong LIU,Shuyong TAN,Wenyi HUO,Xuhai ZHANG,Qiyue SHAO,Feng FANG. Effect of Nitrogen Flow Ratio on Microstructure and Property of High-Entropy Alloy Films (CoCrFeNi)Nx Prepared by Magnetron Sputtering[J]. 材料研究学报, 2019, 33(3): 185-190.
[10] Shengyang PANG,Feng LIU,Chenglong HU,Shijun WANG,Sufang TANG. Effect of Carbon Matrix Structure on Electrical Properties of C/C Composites[J]. 材料研究学报, 2019, 33(12): 935-941.
[11] Bin QIN,Qun WANG,FuMeng WANG,LiE JIN,XiaoLing XIE,Qing CAO. Preparation of Needle Cokes with High Electrical Conductivity and Low Coefficient of Thermal Expansion[J]. 材料研究学报, 2019, 33(1): 53-58.
[12] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[13] YANG Xianfeng, XU Xiewen, LIU Qicheng, XIE Zhipeng. Preparation of Anti-satic Zirconia Ceramics by Carburization at High Temperature[J]. 材料研究学报, 2016, 30(1): 45-50.
[14] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[15] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
No Suggested Reading articles found!