Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (6): 646-651    DOI:
论文 Current Issue | Archive | Adv Search |
The effect on electrochemical performance of LiFePO4 by different doping
KANG Xiaoxue1; TIAN Yanwen1; SHAO Zhongbao2;  YUAN Wansong1
1.School of Materials and Metallurgy; Northeastern University; Shenyang 110004
2.School of Science; Northeastern University; Shenyang 110004
Cite this article: 

KANG Xiaoxue TIAN Yanwen SHAO Zhongbao YUAN Wansong. The effect on electrochemical performance of LiFePO4 by different doping. Chin J Mater Res, 2009, 23(6): 646-651.

Download:  PDF(1200KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

LiFe 0.95 M 0.05 PO 4  (M=Mg, Ni, Co) were synthesized by hydrothermal process with Fe-site doping in liquid phase. The samples of LiFe0.95 M 0.05 PO 4 were characterized by XRD, FTIR and SEM methods. The effect of Fe-site doping on electrochemical properties of the samples was investigated. The results show that the electrochemical capacity and cyclic stability of LiFe 0.95 M 0.05 PO 4 at 1C are enhanced. Under 1C rate, the first discharge capacity of LiFe 0.95 Mg 0.05 PO 4,  LiFe 0.95 Ni 0.05 PO 4 and LiFe 0.95 Co 0.05 PO 4 exhibit 133.1 mAh·g−1, 128.4 mAh·g−1 and 135.2 mAh·g−1, respectively. In three doping ions, the result of Co 2+ doping is the best. The capacity fading rates of LiFe 0.95 Co 0.05 PO 4 are 5.7% at 0.1C and 9.5% at 1C after 30 cycles. Such a significant improvement of electrochemical performance at 1C rate should be related to the enhancement of the reversibility and conductivity of LiFePO4 doped by bivalent cation
in Fe-site.

Key words:  inorganic non-metallic materials       LiFePO4       Fe-site doping       hydrothermal synthesis       doping in liquid phase     
Received:  31 May 2009     
ZTFLH: 

TM912

 
Fund: 

Supported by the Liaoning Science and Technology Key Project No.2005224016.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I6/646

1 A.K.Padhi, K.S.Nanjundaswamy, J.B.Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, Journal of the Electrochemical Society, 144(4), 1188-1194(1997) 2 M.Takahashi, S.Tobishima, K.Takei, Y.Sakurai, Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries, Solid State Ionics, 148(3-4), 283-289(2002) 3 H.Huang, S.C.Yin, L.F.Nazar, Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochemical and Solid State Letters, 4(10), A170- A172(2001) 4 F.Croce, A.D.Epifanio, J.Hassoun, A.Deptula, T.Olczac, B.Scrosati, A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode, Electrochemical and Solid State Letters, 5(3), A47-A50(2002) 5 Z.Wang, S.Su, C.Yu, Y.Chen, D.Xia, Synthesises, characterizations and electrochemical properties of sphericallike LiFePO4 by hydrothermal method, Journal of Power Sources, 184(2), 633-636(2008) 6 S.Y.Chung, J.T.Bloking, Y.M.Chiang, Electronically conductive phospho-olivines as lithium storage electrodes, Nature Materials, 1(2), 123-128(2002) 7 J.Barker, M.Y.Saidi, J.L.Swoyer, Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method, Electrochemical and Solid State Letters, 6(3), A53-A55(2003) 8 K.Dokko, S.Koizumi, K.Sharaishi, K.Kanamura, Electrochemical properties of LiFePO4 prepared via hydrothermal route, Journal of Power Sources, 165(2), 656-659(2007) 9 E.M.Jin, B.Jin, D.K.Jun, K.H.Park, H.B.Gu, K.W.Kim, A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method, Journal of Power Sources, 178(2), 801-806(2008) 10 C.M.Burba, R.Frech, Raman and FTIR spectroscopic study of LixFePO4 (0 x 1), Journal of the Electrochemical Society, 151(7), A1032-A1038(2004) 11 A.Yamada, S.C.Chung, K.Hinokuma, Optimized LiFePO4 for lithium battery cathodes, Journal of the Electrochemical Society, 148(3), A224-A229(2001) 12 D.Y.W.Yu, C.Fietzek, W.Weydanz, K.Donoue, T.Inoue, H.Kurokawa, S.Fujitani, Study of LiFePO4 by cyclic voltammetry, Journal of the Electrochemical Society, 154(4), A253-A257(2007)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!