Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (6): 628-634    DOI:
论文 Current Issue | Archive | Adv Search |
Effect of impurity ions on electrochemical super-capacitive properties of amorphous hydrated ruthenium oxide
WU Caixia1; LIU Gang2; FANG Haitao2; LI Feng3; SHI Pengfei1
1.School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin 150001
2.School of Materials Science and Engineering; Harbin Institute of Technology; Harbin 150001
3.Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

WU Caixia LIU Gang FANG Haitao LI Feng SHI Pengfei. Effect of impurity ions on electrochemical super-capacitive properties of amorphous hydrated ruthenium oxide. Chin J Mater Res, 2009, 23(6): 628-634.

Download:  PDF(1341KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Amorphous hydrous ruthenium oxide was prepared by a chemical precipitation method. Two ruthenium oxide samples with different contents of Na and Cl impurities were obtained by changing the number of times for washing sediments with distilled water. The experiment results showed that the Na and Cl impurities exist as hydrated Na+ and hydrated Cl, respectively. Sample W 5 (sufficiently
washed 5 times with distilled water during its preparation) has lower content of Na+ and Cl+ impurities in comparison with sample W 1 (insufficiently washed once with distilled water during its preparation). Cyclic voltammetric measurements indicate that the specific capacitance and power performance of W 5 are all higher than that of W 1. Hydrated Na+ and Cl impurities not only decrease the specific capacitance of ruthenium oxide, but degrade the power performance. The reason for the deleterious effect of hydrated Na+ and Climpurities on the super-capacitive properties is discussed.

Key words:  inorganic non-metallic materials        material physics and chemistry       supercapacitor       X–ray photoelectron spectra       ruthenium oxide     
Received:  27 May 2009     
ZTFLH: 

O614

 
Fund: 

Supported by National Natural Science Foundation of China Nos.50872026 and 50602011.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I6/628

1 B.E.Conway, Electrochemical Supercapacitors (Norwell, Kluwer Academic Publication, 1999)p.1
2 J.P.Zheng, P.J.Cygan, T.R.Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, Journal of The Electrochemical Society, 142, 2669(1995)
3 J.P.Zheng, T.R.Jow, A new charge storage mechanism for electrochemical capacitors, Journal of The Electrochemical Society, 142, L6(1995)
4 A.Foelske, O.Barbieri, M.Hahn, R.Kotz, An X-ray photoelectron spectroscopy study of hydrous ruthenium oxide powders with various water contents for supercapacitors, Electrochemical and Solid-State Letters, 9(6), A268(2006)
5 O.Barbieri, M.Hahn, A.Foelske, R.Kotz, Effect of electronic resistance and water content on the performance of RuO2 for supercapacitors, Journal of The Electrochemical Society, 153(11), A2049(2006)
6 Y.Sato, K.Yomogida, T.Nanaumi, K.Kobayakawa, Y.Ohaswa, M.Kawai, Electrochemical behavior of activated-carbon capacitor materials loaded with ruthenium oxide, Electrochemical and Solid-State Letters, 3(3), 113(2000)
7 S.Mitra, K.S.Lokesh, S.Sampath, Exfoliated graphiteruthenium oxide composite electrodes for electrochemical supercapacitors, Journal of Power Sources, 185, 1544(2008)
8 H.Kim, B.N.Popov, Characterization of hydrous ruthenium oxide-carbon nanocomposite supercapacitors prepared by a colloidal method, Journal of Power Sources, 104, 52(2002)
9 C.C.Hu, W.C.Chen, K.H.Chang, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, Journal of Electrochemical Society, 151(2), A281(2004)
10 WANG Xiaofeng, GAO Qi, LIANG Ji, Nano ruthenium oxide/carbon nanotubes composite electrode material for electrochemical capacitors, Rare Metal Materials and Engineering, 35(2), 295(2006)
(王晓峰, 高崎, 梁吉, 纳米氧化钌的制备及其碳纳米管复合电极的超电容特性, 稀有金属材料与工程,  35(2), 295(2006)
11 C.C.Hu, Y.H.Huang, Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors, Journal of The Electrochemical Society, 146(7), 2465(1999)
12 C.C.Hu, M.J.Liu, K.H.Chang, Anodic deposition of hydrous ruthenium oxide for supercapacitors, Journal of Power Sources, 163, 1126(2007)
13 J.J.Jow, H.J.Lee, H.R.Chen, M.S.Wu, T.Y.Wei, Anodic, cathodic and cyclic voltammetric deposition of ruthenium oxides from aqueous RuCl3 solutions, Electrochimica Acta, 52, 2625(2007)
14 B.O.Park, C.D.Lokhande, H.S.Park, K.D.Jung, O.S.Joo, Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes-effect of film thickness, Journal of Power Sources, 134, 148(2004)
15 Y.R.Ahn, C.R.Park, S.M.Jo, D.Y.Kim, Enhanced chargedischarge characteristics of RuO2 supercapacitors on heattreated TiO2 naorods, Applied Physics Letters, 90, 122106(2007)
16 Y.R.Ahn, M.Y.Song, S.M.Jo, C.R.Park, D.Y.Kim, Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates, Nanotechnology, 17, 2865(2006)

17 K.H.Chang, C.C.Hu, Hydrothermal synthesis of hydrous crystalline RuO2 nanoparticles for supercapacitors, Electrochemical and Solid-State Letters, 7(12), A466(2004)
18 K.H.Chang, C.C.Hu, C.Y.Chou, Textural and capacitive characteristics of hydrothermally derived RuO2 H2O nanocrystallites: independent control of crystal size and water content, Chemistry Materials, 19, 2112(2007)
19 I.H.Kim, K.B.Kim, Ruthenium oxide thin film electrodes for supercapacitors, Electrochemical and Solid-State Letters, 4(5), A62(2001)
20 I.H. Kim, K.B.Kim, Ruthenium oxide thin film electrodes prepared by electrostatic spray deposition and their charge storage mechanism, Journal of Electrochemical Society, 151(1), E7(2004)
21 I.H. Kim, K.B.Kim, Electrochemcial characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications, Journal of Electrochemical Society, 153(2), A383(2006)
22 A.Shchukarev, J.F.Boily, A.R.Felmy, XPS of fast-frozen hematite colloids in NaCl aqueous solutions: I. Evidence for the formation of multiple layers of hydrated sodium and chloride ions incuced by the 001 basal plane, Journal of Physical Chemistry C, 111, 18307(2007)
23 D.W.Wang, F.Li, M.Liu, G.Q.Lu, H.M.Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angewandte Chemie-International Edition, 47, 373(2008)

[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!