Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (6): 635-639    DOI:
论文 Current Issue | Archive | Adv Search |
Study on terminal solid solubility of hydrogen in N18, Zry–4 and M5 zirconium alloys
TANG Rui;  YANG Xiaoxue
National Key Lab. for Nuclear Fuel and Materials; Nuclear Power Institute of China; Chengdu 610041
Cite this article: 

TANG Rui YANG Xiaoxue. Study on terminal solid solubility of hydrogen in N18, Zry–4 and M5 zirconium alloys. Chin J Mater Res, 2009, 23(6): 635-639.

Download:  PDF(844KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The terminal solid solubilities for dissolution of hydrides (TSSD) during heating–up and for precipitation of hydrides (TSSP) during cooling–down for N18, Zry–4 and M5 with hydrogen concentrations of 20–240 μg/g were measured by differential scanning calorimetry (DSC). The results show that the difference in TSSD or TSSP is very small for these alloys, and best–fit equations were derived. A significant hysteresis between the solvi of TSSD and TSSP occurred, resulting from the hydride–matrix volumetric misfit strain. Based on the widths of the DSC peaks obtained during cooling–down, the average precipitation rates of zirconium hydrides from super–saturated state were evaluated by best–fit equations. The activation energies of precipitation rates were approximately equivalent to the reported values of hydrogen diffusion in Zircaloys, indicating a hydrogen diffusion mechanism.

Key words:  foundational discipline in materials science       terminal solid solubility of hydrogen       differential scanning calorimetry       Zr–based alloys       hydride dissolution and precipitation     
Received:  06 May 2009     
ZTFLH: 

TG146

 

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I6/635

1 D.O.Northwood, O.Kosasih, Hydrides and delayed hydrogen cracking in zirconium and its alloys, Int. Met. Rev., 28, 92–121(1983)
2 B.Cox, Environmentally–induced cracking of zirconium alloys–A review, J. Nucl. Mater., 170, 1–23 (1990)
3 S.Q.Shi, G.K.Shek, M.P.Puls, Hydrogen concentration limit and critical temperatures for delayed hydride cracking in zirconium alloys, J. Nucl. Mater., 218, 189–211(1995)
4 M.P.Puls, Effects of crack tip stress state and hydride–matrix interaction stresses on delayed hydride cracking, Metall. Trans. A, 21, 2905–2917 (1990)
5 R.N.Singh, N.Kumar, R.Kishore, Delayed hydride cracking in Zr–2.5Nb pressure tube material, J. Nucl. Mater., 304, 189–203(2002)
6 D.Khatamian, Z.L.Pan, M.P.Puls, C.D.Cann, Hydrogen solubility limits in Excel, an experimental zirconium–based alloys, J. Alloys Compd., 231, 488–493(1995)
7 W.H.Erikson, D.Hardie, The influence of alloying elements on the terminal solubility of hydrogen in α– zirconium, J. Nucl. Mater., 13, 254–262(1964)
8 A.Sawatzky, B.J.S.Wilkins, Hydrogen solubility in zirconium alloys determined by thermal diffusion, J. Nucl. Mater., 22, 304–310(1967)
9 D.Khatamian, V.C.Ling, Hydrogen solubility limits in α– and β–zirconium, J. Alloys Compd., 253–254, 162–166(1997)
10 Y.Mishima, S.Ishino, S.Nakajtma, A resistometric study of the solution and precipitation of hydrides in unalloyed zirconium, J. Nucl. Mater., 27, 335–344(1968)
11 D.Setoyama, J.Matsunaga, M.Ito, Influence of additive elements on the terminal solid solubility of hydrogen for zirconium alloy, J. Nucl. Mater., 344, 291–294(2005)
12 D.Khatamian, Solubility and partitioning of hydrogen in metastable Zr–based alloys used in the nuclear industry, J. Alloys Comp., 293–295, 893–899(1999)
13 Z.L.Pan, I.G.Ritchie, M.P.Puls, The terminal solid solubility of hydrogen and deuterium in Zr–2.5Nb alloys, J. Nucl. Mater., 228, 227–237(1996)
14 G.F.Slattery, The terminal solubility of hydrogen in zirconium alloys between 30 and 400 , J. Inst. Met., 95, 43–47(1967)
15 A.McMinn, E.C.Darby, J.S.Schofield, The terminal solid solubility of hydrogen in zirconium alloys, in: G.P.Sabol, G.D.Moan (Eds.), Proceedings of the 12th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1354, 2000, pp. 173–195
16 J.J.Kearns, Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy–2 and Zircaloy–4, J. Nucl. Mater., 22, 292–230(1967)
17 R.N.Singh, S.Mukherjeea, A.Guptab, S.Banerjeea, Terminal solid solubility of hydrogen in Zr–alloy pressure tube materials, J. Alloys Comp., 389, 102–112(2005)
18 K.Une, S.Ishimoto, Dissolution and precipitation behavior of hydrides in Zircaloy–2 and high Fe Zircaloy, J. Nucl. Mater., 322, 66–72(2003)
19 D.Khatamian, Effect of β–Zr decomposition on the solubility limits for H in Zr–2.5Nb, J. Alloys Compd., 356–357, 22–26(2003)
20 J.H.Root, R.W.L.Fong, Neutron diffraction study of the precipitation and dissolution of hydrides in Zr–2.5Nb pressure tube material, J. Nucl. Mater., 232, 75–85 (1996)
21 C.D.Cann, A.Atrens, A metallographic study of the terminal solubility of hydrogen in zirconium at low hydrogen concentrations, J. Nucl. Mater., 88, 42–50(1980)
22 P.Vizca´?no, A.D.Banchik, J.P.Abriata, Solubility of hydrogen in Zircaloy–4: irradiation induced increase and thermal recovery, J. Nucl. Mater., 304, 96–106(2002)
23 K.Une, S.Ishimoto, Heat capacity of hydrogenated Zircaloy–2 and high Fe Zircaloy, J. Nucl. Mater., 323, 101–107 (2003)
24 M.P.Puls, Elastic and plastic accommodation effects on metal–hydride solubility, Acta Matall., 32, 1259–1269(1984)
25 M.P.Puls, On the consequences of hydrogen supersaturation effects in Zr alloys to hydrogen ingress and delayed hydride cracking, J. Nucl. Mater., 165, 128–141(1989)
26 J.J Kearns, Diffusion coefficient of hydrogen in alpha zirconium, Zircaloy–2 and Zircaloy–4, J. Nucl. Mater., 43, 330–338(1972)
27 A.Sawatzky, The diffusion and solubility of hydrogen in the alpha phase of zircaloy–2, J. Nucl. Mater., 2, 62–68(1960)

[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[6] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[7] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[8] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[9] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
[10] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
[11] Xiaogang WANG,Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. 材料研究学报, 2014, 28(4): 308-313.
[12] Wu YAO,Mengxue WU,Yongqi WEI. Determination of Reaction Degree of Silica Fume and Fly Ash in a Cement - silica fume - fly ash Ternary Cementitious System[J]. 材料研究学报, 2014, 28(3): 197-203.
[13] Ruwu WANG,Jing LIU,Zhanghua GAN,Chun ZENG,Fengquan ZHANG. Crystallization Kinetics of Amorphous Alloys Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)[J]. 材料研究学报, 2014, 28(3): 204-210.
[14] Lei LI,Ke QIN,Haitao ZHANG,Zhihao ZHAO,Qingfeng ZHU,Yubo ZUO,Jianzhong CUI. Crystallographic Features of a Solidified Hypoeutectic Zn-4.45%Al Alloy[J]. 材料研究学报, 2014, 28(2): 126-132.
[15] Yanen WANG,Qinghua WEI,Mingming YANG,Shengmin WEI. Molecular Dynamics Simulation of Mechanical Properties and Surface Interaction for HA/NBCA[J]. 材料研究学报, 2014, 28(2): 133-138.
No Suggested Reading articles found!