Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (2): 153-157    DOI:
论文 Current Issue | Archive | Adv Search |
Corrosion degradation of surface modified bio–magnesium materials by heat–self–assembled monolayer
GAO Jiacheng1; QIAO Liying1;2;  WANG Yong1
1.College of Materials Science and Engineering; Chongqing University; Chongqing 400045
2.National Engineering Research Center for Magnesium Alloys; Chongqing University; Chongqing 400044
Cite this article: 

GAO Jiacheng QIAO Liying WANG Yong. Corrosion degradation of surface modified bio–magnesium materials by heat–self–assembled monolayer. Chin J Mater Res, 2009, 23(2): 153-157.

Download:  PDF(1157KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg and a Mg–Ca alloy were heat treated at 773 K for 10h and self–assembled in stearic acid alcohol solution of 0.5mol/L for 1.5 h to improve the corrosion properties and biocompatibility of bio–magnesium materials. And then comparison research was carried out for the bio–magnesium materials with and without modification by putting in simulated body fluid and in vivo animal test. Electronic balance, SEM, EDS, XRD FTIR, digital electronic pH meter and atomic absorption spectrometry were used to analyse the corrosion process, corrosion rate and the products. The results showed that the corrosion resistance and bioactivity of the bio–magnesium materials with heat–self–assembled monolayer were improved. The corrosion rate of Mg changed from 0.11 mm/y to 0.05 mm/y, and that of Mg–Ca alloy from 0.38 mm/y to 0.32 mm/y. The diameter of Mg in thigh bone of the tested rabbit for 12 weeks decreased from 0.97 mm to 0.20 mm, and thickness of new bone increased from 2.563 mm to 3.135 mm.

Key words:  materials failure and protection      magnesium      surface modification      corrosion degradation      heat–self–assembled monolayer     
Received:  28 July 2008     
ZTFLH: 

TG172

 
Fund: 

Supported by National Nature Science Foundation of China No.30670562.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I2/153

1 ZHANG Zhongcheng, Xu Zhiyun, DU Fengpei, Magnesium and health, Studies of Trace Elements and Health, 23(4), 67(2007)
(张忠诚, 徐祗云, 杜凤沛, 镁与人体健康, 微量元素与健康研究,  23(4), 67(2007)
2 GAO Jiacheng, QIAO Liying, Magnesium–based degradable hard tissue biomaterials, Journal of Functional Materials, 39(5), 705(2008)
(高家诚, 乔丽英, 可降解镁基硬组织生物材料的研究进展, 功能材料,  39}(5), 705(2008)
3 Vormann J., Magnesium nutrition and metabolism, Mol Aspects Med., 24, 27(2003)
4 Okuma T., Magnesium and bone strength, Nutrition, 17, 679(2001)
5 Mark P. Staigera, Alexis M, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27,
1728(2006)
6 Frank Witte, Biodegradable magnesium–hydroxyapatite metal matrix composites, Biomateials, 28, 2163 (2007)
7 Witte F, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials, 27, 1013(2006)
8 Duygulu O, Invesigation on the potential of magnesium alloy AZ31 as a bone impant, Materials Science Forum, 540–549, 421(2007)
9 Muller, wolf Dieter, Magnesium and its alloys as degradable biomaterials, corrosion studies using potentiodynamic and EISelectrochemical technigues, Materials Research, 10(1), 5(2007)
10 Ren Yibin, Study of biodegradation of pure magnesium, Key Engineering Materials, 342,343, 601 (2007)
11 Guangling Song, Control of biodegradation of biocompatible magnesium alloys, corrosion Science, 49, 1696 (2007)
12 Kuwahara H., Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank{s soluton, Materials Transactions, 42(7), 1317(2001)
13 Longchuan Li, Jiacheng Gao, evaluation of cyto–toxicity and corrosion behavior of alkai–treated treated magnesium in simulated body fluid, Surface and Coating Technology, 185(1), 92(2004)
14 Jiacheng Gao, Surface modification of magnesium with rare earth conversion films for biomedical protection, Mateials Science Forum, 546–549, 601(2007)
15 Erlin Zhang, Liping Xu, Ke Yang, Formation by ion plating of Ti–coating on pure Mg for biomedical applications, Scripta Materials, 53, 523(2005)
16 Liu Chenglong, Corrosion resistance of titanium ion implated AZ91 magnesium alloy, J. Vacuum Science and technology A, Surface and Films, 25(2), 334(2007)
17 H.Liang, Bioactivity of Mg–ion–impanted zirconia and titanium, Applied surface science, 253, 33226(2007)
18 LI Jiuqing, DU Zhuiwei, Corrosion experiment methods and surveillance technology (Beijing, Petrochemistry Pubsher, China, 2007) p.36
(李久青, 杜翠薇,   腐蚀试验方法及监测技术  (北京, 中国石化出版社, 2007) p.36)

[1] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[2] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[3] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[4] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[5] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[7] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[8] GU Jiaqing, TANG Weineng, XU Shiwei. Microstructure Evolution During Tensile Deformation of an Extruded Mg-0.4Zn Alloy Plate[J]. 材料研究学报, 2021, 35(7): 553-560.
[9] WANG Dianjun, ZHANG Mingqiu, JI Zesheng, ZHANG Jisheng, WEI Yuan. Process and Properties of Graphene Reinforced Mg-based Composite Prepared by In-situ Method[J]. 材料研究学报, 2021, 35(6): 474-480.
[10] DU Bangdeng, LIU Jun, WANG Xiaowan, WANG Wei, CHEN Demin. Effect of Heat Treatment on Microstructure and Al-water Reactivity of Al-Mg-Ga-In-Sn Alloys[J]. 材料研究学报, 2021, 35(1): 25-35.
[11] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[12] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[13] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[14] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[15] CHEN Liang, WANG Liping, FENG Yicheng, WANG Lei, ZHAO Sicong. Effect of Bi on Microstructure and Mechanical Properties of Mg-3Al-3Nd Alloy[J]. 材料研究学报, 2020, 34(6): 425-433.
No Suggested Reading articles found!