Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (6): 474-480    DOI: 10.11901/1005.3093.2020.385
ARTICLES Current Issue | Archive | Adv Search |
Process and Properties of Graphene Reinforced Mg-based Composite Prepared by In-situ Method
WANG Dianjun1(), ZHANG Mingqiu1, JI Zesheng2, ZHANG Jisheng1, WEI Yuan1
1.School of Modern Manufacturing Engineering, Heilongjiang Institute of Technology, Jixi 158100, China
2.School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 151000, China
Cite this article: 

WANG Dianjun, ZHANG Mingqiu, JI Zesheng, ZHANG Jisheng, WEI Yuan. Process and Properties of Graphene Reinforced Mg-based Composite Prepared by In-situ Method. Chinese Journal of Materials Research, 2021, 35(6): 474-480.

Download:  HTML  PDF(12947KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The graphene reinforced Mg-based composite material was prepared by in-situ method, and then the in-situ generated graphene and the prepared composite were characterized by means of Raman, XPS, XRD, SEM, TEM and electronic universal tensile testing machine. The results show that graphene-reinforced Mg-based composites can be prepared via in-situ reaction. As the reaction temperature increases the quality of the in-situ generated graphene increases, and the performance of the resulted composites is better. When the reaction temperature is 780℃ the mechanical properties of the composite material reach the maximum, namely, its yield strength, tensile strength and elongation are 245 MPa, 340 MPa and 6.7%, respectively. The yield strength, tensile strength and elongation increased by 40%, 21.4% and 48.8%, respectively, compared with the plain Mg-alloy.

Key words:  composite      in situ method      graphene      magnesium matrix composite      microstructure      mechanical properties     
Received:  11 September 2020     
ZTFLH:  TB331  
Fund: Natural Science Foundation of Heilongjiang Province(LH2019E117)
About author:  WANG Dianjun, Tel: (0467)2395132, E-mail: 410999836@qq.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.385     OR     https://www.cjmr.org/EN/Y2021/V35/I6/474

AlZnMnSiCuFeMg
2.801.000.250.060.010.01Bal.
Table 1  Chemical compositions of AZ31 magnesium alloy (mass fraction, %)
Fig.1  Flow chart of in-situ reaction graphene/magnesium composite preparation
Fig.2  Raman analysis of the in-situ generated graphene at700℃ (a), 750℃ (b), 780℃ (c) and ratio of ID/IG and I2D/IG (d)
Fig.3  XRD analysis of the in-situ generated graphene at 780℃
Fig.4  XPS analysis of in-situ graphene at 780℃ (a) Carbon-oxygen ratio of in-situ generated graphene; (b) Fitting of carbon peaks of in-situ graphene
Fig.5  SEM morphology of in-situ graphene at 780℃ and its distribution in magnesium matrix (a) Micro morphology of in-situ generated graphene; (b) and (c) are enlargements of figure (a); (d) Distribution of in-situ graphene in magnesium matrix
Fig.6  TEM morphology of in-situ graphene at 780℃ (a) and (b) Micro morphology of in-situ generated graphene; (c) HRTEM of in-situ generated graphene; (d) The interface between graphene and magnesium matrix
Fig.7  In-situ in-situ graphene reinforced mechanical properties of magnesium matrix composites
Fig.8  Fracture morphology of in-situ graphene reinforced magnesium matrix composite at 780℃ (a) Tensile fracture morphology; (b) is an enlargement of (a)
1 Wei S H, Hu M L, Ji Z S, et al. Evaluation of microstructure and properties of AZ31/Al2O3 composites prepared by solid-phase synthesis [J]. Materials Science and Technology, 2018, 34(17): 2097
2 Ren F Z, Wu S Z, Shi W. Interface characteristics and damping performance of Ni-coated short carbon fiber reinforced AZ91D magnesium matrix composites [J]. Chinese Journal of Materials Research, 2017, 31(1): 74
任富忠, 吴思展, 石维. 镍涂层短碳纤维增强AZ91D镁基复合材料的界面特征和阻尼性能 [J]. 材料研究学报, 2017, 31(1): 74
3 Tao J X, Zhao M C, Zhao Y C, et al. Influence of graphene oxide (GO) on microstructure and biodegradation of ZK30-xGO composites prepared by selective laser melting [J]. Journal of Magnesium and Alloys, 2020, 8(3): 952
4 Wei S H, Hu M L, Ji Z S, et al. Microstructure and mechanical properties of Al2O3/AZ31 composites prepared by multi-pass hot extrusion [J]. Journal of Materials Engineering, 2019, 47(12): 85
魏帅虎, 胡茂良, 吉泽升等. 多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能 [J]. 材料工程, 2019, 47(12): 85
5 Balasubramaniam I, Maheswana R, Manikandan V, et al. Mechanical characterization and machining of squeeze cast AZ91D/SiC magnesium based metal matrix composites [J]. Procedia Manufacturing, 2018, 20: 97
6 Mustafa A, Bilge D, Muhammet T. Hybrid reinforced magnesium matrix composites (Mg/SiC/GNPs): drilling investigation [J]. Metals-Open Access Metallurgy Journal, 2018, 8(4): 215
7 Nie K B, Deng K K, Wang X J, et al. Characterization and strengthening mechanism of SiC nanoparticles reinforced magnesium matrix composite fabricated by ultrasonic vibration assisted squeeze casting [J]. Journal of Materials Research, 2017, 32(13): 1
8 Jiang Q C, Li X L, Wang H Y. Fabrication of TiC particulate reinforced magnesium matrix composites [J]. Scripta Materialia, 2003, 48(6): 713
9 Zhang X Q, Wang E Q, et al. The mechanical properties of magnesium matrix composites reinforced with (TiB2+TiC) ceramic particulate [J]. Materials Letters, 2005
10 Habibnejad K M, Mahmudi R, Poole W J. Work hardening behavior of Mg-based nano-composites strengthened by; Al2O3 nano-particles [J]. Materials Science and Engineering A, 2013, 567: 89
11 Deng K K, Li J C, Xu F J, et al. Hot deformation behavior and processing maps of fine-grained SiCp/AZ91 composite [J]. Materials & Design, 2015, 67: 72
12 Deng K K, Wang C J, Wang X J. Microstructure, mechanical properties and strengthening mechanism of SiCP /AZ91 composites [J]. Acta Materiae Compositae Sinica, 2014, 31(002): 388
邓坤坤, 王翠菊, 王晓军. SiCP/AZ91复合材料的显微组织、力学性能及强化机制 [J]. 复合材料学报, 2014, 31(002): 388
13 Xiang S L, Hu X S, Wang X J, et al. Precipitate characteristics and synergistic strengthening realization of graphene nanoplatelets reinforced bimodal structural magnesium matrix composites [J]. Materials Science and Engineering A, 2018, 724: 348
14 Yuan Q H, Zhou G H, Liu Y, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets [J]. Carbon, 2018, 127
15 Yuan Q H, Zeng X S, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO [J]. Carbon, 2016, 96
16 Wang M, Zhao Y, Wang L D, et al. Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process [J]. Carbon, 2018, 139
17 Li C D, Wang X J, Liu W Q, et al. Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite [J]. Materials Science and Engineering A, 2014, 597(8): 264
18 Wang L D, Wei B, Dong P, et al. Large-scale synthesis of few-layer graphene from magnesium and different carbon sources and its application in dye-sensitized solar cells [J]. Materials & Design, 2016, 92
19 Xiang S L, Hu X S, Wang X J, et al. Precipitate characteristics and synergistic strengthening realization of graphene nanoplatelets reinforced bimodal structural magnesium matrix composites [J]. Materials Science and Engineering A, 2018, 724: 348
20 Meng L L, Hu X S, Wang X J, et al. Graphene nanoplatelets reinforced Mg matrix composite with enhanced mechanical properties by structure construction [J]. Materials Science and Engineering A, 2018, 733: 414
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[8] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[9] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[10] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[11] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[12] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[13] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[14] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[15] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
No Suggested Reading articles found!