Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (1): 22-26    DOI:
论文 Current Issue | Archive | Adv Search |
Synthesis and electrochemical property of LiFePO4 with core-shell structures
LIU Shuhe;  WEN Lei ; BAI Suo; LI Feng;  WANG Zuoming
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

LIU Shuhe WEN Lei BAI Suo LI Feng WANG Zuoming. Synthesis and electrochemical property of LiFePO4 with core-shell structures. Chin J Mater Res, 2009, 23(1): 22-26.

Download:  PDF(655KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Two types of core-shell structured cathode materials-pyrolytic carbon(PyC)/LiFePO4 and carbon nanofiber(CNF)/LiFePO4 were synthesized by fluidized bed chemical vapor deposition method and their electrochemical properties were explored. The PyC or CNF coating can effectively reduce the resistivity of LiFePO4, and greatly improved its charge-discharge capacity and cyclability. Compared with PyC, the one dimensional structure and excellent mechanical performance of CNF make it more suitable as the conductive additive of LiFePO4.

Key words:  inorganic non-metallic materials      LiFePO$_{4}$      fluidized-bed      electrochemical property     
Received:  05 March 2008     
ZTFLH: 

TB321

 

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I1/22

1 A.K.Padhi, K.S.Nanjundaswamy, J.B.Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 144, 1188(1997)
2 S.F.Yang, P.Y.Zavalij, M.S.Whittingham, Hydrothermal synthesis of lithium iron phosphate cathodes, Electrochem. Commun., 3, 505(2001)
3 Z.H.Chen, J.R.Dahn, Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density, J. Electrochem. Soc., 149, A1184(2002)
4 C.H.Mi, X.B.Zhao, G.S.Cao, J.P.Tu, In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes, J. Electrochem. Soc., 152, A483(2005)
5 WANG Guan, JIANG Zhiyu, Preparation of LiFePO4/C composite material using Fe(w)and its electrochemical performance, Battery, 37, 195(2007)
(王冠,  江志裕,  以三价铁制备LiFePO4/C复合材料及其电化学性能, 电池,  37, 195(2007))
6 K.Kim, J.H.Jeong, I.J.Kim, H.S.Kim, Carbon coatings with olive oil, soybean oil and butter on nano-LiFePO4, J. Power Sources, 167, 524(2007)
7 N.Ravet, Y.Chouinard, J.F.Magnan, S.Besner, M.Gauthier, M.Armand, Electroactivity of natural and synthetic triphylite, J. Power Sources, 97-98, 503(2001)
8 J.L.Li, T.Suzuki, K.Naga, Y.Ohzawa, T.Nakajima, Electrochemical performance of LiFePO4 modified by pressure-pulsed chemical vapor infiltration in lithium-ion batteries, Mat Sci. Eng. B-Solid, 142, 86(2007)
9 I.Belharouak, C.Johnson, K.Amine, Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4, Electrochem. Commun., 7, 983(2005)
10 X.L.Li, F.Y.Kang, X.D.Bai, W.Shen, A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries, Electrochem. Commun., 9, 663(2007)
11 I.V.Thorat, V.Mathur, J.N.Harb, DR.Wheeler, Performance of carbon-fiber-containing LiFePO4 cathodes for high-power applications, J. Power Sources, 162, 673(2006)
12 P.P.Prosini, D.Zane, M.Pasquali, Improved electrochemical performance of a LiFePO4-based composite cathode, Electrochimica Acta, 46, 3517(2001)
13 P.P.Prosini, M.Lisi, D.Zane, M.Pasquali, Determination of the chemical diffusion coefficient of lithium in LiFePO4, Solid State Ionics, 148, 45(2002)
14 S.H.Liu, Z.M.Wang, Li F, S.Bai, L.Wen, H.M.Cheng, Improving the electrochemical properties of natural graphite spheres by coating pyrolytic carbon shell, New Carbon Materials, 23, 30(2008)
15 ZHANG Weigang, Chemical Vapor Deposition-from Gaseous Hydrocarbon to Solid Carbon, 1st edition, (Beijing, Science Press, 2007) p.222
 (张伟刚,  化学气相沉积--从烃类气体到固体碳, 第一版, (北京, 科学出版社, 2007)  p.222)
16 WANG Haojing, WANG Hongfei, LI Dongfeng, ZHU Xingming, HE Fu, WANG Xinkui, The effect of graphitization temperature on the microstructure and mechanical properties of carbon fibers, New Carbon Materials, 20, 157(2005)
(王浩静,王红飞,李东风,朱星明,贺福,王心葵,石墨化温度对炭纤维微观结构及其力学性能的影响,新型炭材料,20,157(2005))
17 G.T.K.Fey, T.L.Lu, Morphological characterization of LiFePO4/C composite cathode materials synthesized via a carboxylic acid route, J. Power Sources, 178, 807(2008)
18 D.Y.Wang, X.D.Wu, Z.X.Wang, L.Q.Chen, Cracking causing cyclic instability of LiFePO4 cathode material, J Power Sources, 140, 125(2005)
19 N.J.Yun, H.W.Ha, K.H.Jeong, H.Y.Park, K.Kim, Synthesis and electrochemical properties of olivine-type LiFePO4/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor, J. Power Sources, 160, 1361(2006)
20 R.Dominko, M.Bele, M.Gaberscek, M.Remskar, D.Hanzel, S.Pejovnik, J.Jamnik, Impact of the carbon coating thickness on the electrochemical performance of LiFeP04/C composites, J. Electrochem. Soc., 152, A607(2005) 21 P.P.Prosini, M.Carewska, S.Scaccia, P.Wisniewski, M.Pasquali, Long-term cyclability of nanostructured LiFePO4, Electrochimica Acta, 48, 4205(2003)

[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!