Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (1): 17-21    DOI:
论文 Current Issue | Archive | Adv Search |
Mechanic behaviors of the thermoviscoelastic matrix composites with shape memory fiber
HE Weibo; JIN Ming; ZHAO Yongli
School of Civil Engineering and Architecture; Beijing Jiaotong University; Beijing 100044
Cite this article: 

HE Weibo JIN Ming ZHAO Yongli. Mechanic behaviors of the thermoviscoelastic matrix composites with shape memory fiber. Chin J Mater Res, 2009, 23(1): 17-21.

Download:  PDF(709KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A stress-strain relation of the thermoviscoelastic matrix composites with pre-strained NiTi fiber is proposed in the field of variable temperature based on the thermoviscoelasticity theory and the rule of mixtures, and in view of the process of martensite reverse transformation. During the reverse transformation and the thermoviscoelastic state of matrix, due to matrix relaxation modulus decreasing,the results show that upon the step constant stress, the compression strain of the composites increases rapidly, and the recovery stress of the NiTi fiber increases then decreases; Under the step constant strain, the increase of the composites stress become slow then fast, till steady. The behaviors of the composites, and the NiTi fiber actuation performance are influenced by higher temperature as well as the material parameters.

Key words:  composites      mechanic behavior      thermoviscoelasticity      NiTi fiber      matrix      relaxation modulus     
Received:  22 April 2008     
ZTFLH: 

TB330

 
Fund: 

Supported by National Natural Science Foundation of China No.90205007.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I1/17

1 J.G.Boyd, D.C.Lagoudas, Thermomechanical response of shape memory composites, Journal of Intelligent Material Systems and Structures, 5(3), 333(1994)
2 J.Wang, Y.P.Shen, Macromechanics of composites reinforced in the aligned SMA short fibers in uniform thermal fields, Smart Materials and Structures, 9, 69(2000)
3 S.Marfia, Micro-macro analysis of shape memory alloy composites, International Journal of Solids and Structures, 42, 3677(2005)
4 ZHU Yuping, DUI Guansuo, Three phase micromechanical modeling for a shape memory alloy reinforced composite, Key Engineering Materials, 324-325, 939(2006)
5 J.Aboudi, The response of shape memory alloy composites, Smart Materials and Structures, 6(1), 1(1997)
6 M.Cherkaoui, Q.P.Sun, G.Q.Song, Micromechanics modeling of composite with ductile matrix and shape memory alloy reinforcement, International Journal of Solids and Structures, 37(11), 1577(2000)
7 ZHU Yiguo, Lu Hexiang, YANG Dazhi, Mechanical properties of elastoplastic matrix composite reinforced by long SMA fibers, Acta Materiae Compositae Sinica, 19(2),89(2002)
(朱Yi国, 吕和祥, 杨大智, SMA长纤维增强弹塑性基体复合材料的力学性能, 复合材料学报,  19(2),89(2002))
8 ZHANG Zhen, SHEN Yapeng, Mechanical properties of SMA composites embedded with aligned SMA short fiber in elastoplastic matrix, Acta Materiae Compositae Sinica, 21(6), 173(2002)
(张臻,  沈亚鹏,  形状记忆合金短纤维增强弹塑性基体复合材料的力学行为,  复合材料学报, 21(6), 173(2002))
9 X.W.Du, G.Sun, A study on the deflection of shape memory alloy reinforced thermo-viscoelastic beam, Composites Science and Technology, 64, 1375(2004) 10 SUN Shuangshuang, SUN Guojun, Influence of thermoviscoelastic behavior of polymer on actuation performance of shape memory alloy, Journal of Shanghai Jiaotong University, 35(4),485 (2001)
(孙双双,  孙国钧,  聚合物的热粘弹性对形状记忆合金作动性能的影响, 上海交通大学学报,  35(4), 485(2001))
11 HUANG Zhengming, An Introduction to Micromechanics of Composites (Beijing, The Press of Science, 2004) p.8
(黄争鸣,  复合材料细观力学引论  (北京, 科学出版社, 2004) p.8)
12 HU Zili, XIONG Ke, Study on interface failure of shape memory alloy(SMA) reinforced smart structure with damages, Acta Mech. Sinica, 21, 286(2005)
13 M.W.Lin, C.A.Rogers, Analysis of stress distribution in a shape memory alloy composite beam, AIAA-91-1164-CP, 169(1991)
14 ZHOU Guangquan, LIU Xiaomin, Theory of Viscoelasticity (Hefei, The Press of University of Science and Technology of China, 1996) p.233
(周光泉, 刘孝敏,  粘弹性理论  (合肥, 中国科学技术大学出版社, 1996) p.233)1996) p.233)

[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] WANG Dianjun, ZHANG Mingqiu, JI Zesheng, ZHANG Jisheng, WEI Yuan. Process and Properties of Graphene Reinforced Mg-based Composite Prepared by In-situ Method[J]. 材料研究学报, 2021, 35(6): 474-480.
[13] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[14] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[15] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
No Suggested Reading articles found!