|
|
|
| Synthesis and Performance of a Novel Quasi-solid-state Electrolyte PHCN Based on Polyvinylidene Fluoride-hydrogenated Acrylate Incorparated with Mesoporous Spherical g-C3N4 |
LIANG Honghua1, CHEN Jiangchao1, ZHENG Wenyu1, WU Haining1, HUANG Yicong1, YI Zhuoyan1, PANG Dazhi1, JIANG Kunpeng1, ZHU Guisheng1( ), XU Huarui1,2 |
1.Engineering Research Center of Electronic Information Materials and Devices, Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China 2.College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China |
|
Cite this article:
LIANG Honghua, CHEN Jiangchao, ZHENG Wenyu, WU Haining, HUANG Yicong, YI Zhuoyan, PANG Dazhi, JIANG Kunpeng, ZHU Guisheng, XU Huarui. Synthesis and Performance of a Novel Quasi-solid-state Electrolyte PHCN Based on Polyvinylidene Fluoride-hydrogenated Acrylate Incorparated with Mesoporous Spherical g-C3N4. Chinese Journal of Materials Research, 2025, 39(12): 935-944.
|
|
|
Abstract Quasi-solid-state electrolytes have garnered significant attention in lithium-ion battery research due to their potential to overcome the safety risks of liquid electrolytes and the low room-temperature ionic conductivity of solid-state electrolytes. In this work, a novel series of quasi-solid-state electrolytes named PHCN (namely PHCN-1, PHCN-2, PHCN-3, and PHCN-4) was fabricated by incorporating mesoporous spherical g-C3N4 into a poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix. The resulting PHCN electrolytes feature unique stationary and "instantaneous" structures, which contribute to enhanced ionic conductivity and reduced polymer crystallinity. The optimized sample, PHCN-3 (with 3% g-C3N4), exhibits outstanding performance: an ionic conductivity of 2.62 × 10-3 S·cm-1 at 30 oC, a Li+ transference number of 0.71, and a widened electrochemical stability window of approximately 4.6 V. A lithium symmetric cell employing the PHCN-3 electrolyte demonstrated exceptional cycling stability for over 2000 h at a current density of 0.2 mA·cm-2. Furthermore, a LiFePO4/PHCN-3-LiPF6/Li cell maintained a high capacity retention of 88.33% after 200 cycles at a 0.5C rate. These findings indicate that the PHCN quasi-solid-state electrolytes present a promising path for the development of high-performance and safe lithium-ion batteries.
|
|
Received: 27 February 2025
|
|
|
| Fund: Guilin Scientific Research and Technology Development Programme(20220120-1);Science and Technology Base and Talent Special Project of Guangxi Province(AD23023013) |
Corresponding Authors:
ZHU Guisheng, Tel: 13507730539, E-mail: zhuguisheng@guet.edu.cn
|
| [1] |
Zhang X Y, Cheng S C, Fu C K, et al. Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries [J]. Nano-Micro Lett., 2025, 17(1): 2
doi: 10.1007/s40820-024-01498-y
|
| [2] |
Janek J, Zeier W G. Challenges in speeding up solid-state battery development [J]. Nat. Energy, 2023, 8(3): 230
doi: 10.1038/s41560-023-01208-9
|
| [3] |
Mahmood A, Bai Z, Wang T, et al. Enabling high-performance multivalent metal-ion batteries: current advances and future prospects [J]. Chem. Soc. Rev., 2025, 54(5): 2369
doi: 10.1039/D4CS00929K
|
| [4] |
Manthiram A, Yu X W, Wang S F. Lithium battery chemistries enabled by solid-state electrolytes [J]. Nat. Rev. Mater., 2017, 2(4): 16103
doi: 10.1038/natrevmats.2016.103
|
| [5] |
Tang L F, Chen B W, Zhang Z H, et al. Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries [J]. Nat. Commun., 2023, 14(1): 2301
doi: 10.1038/s41467-023-37997-6
|
| [6] |
Zhang L, Wang S, Wang Q, et al. Dendritic solid polymer electrolytes: a new paradigm for high-performance lithium-based batteries [J]. Adv. Mater., 2023, 35(35): 2303355
doi: 10.1002/adma.v35.35
|
| [7] |
Zhao Q, Stalin S, Zhao C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries [J]. Nat. Rev. Mater., 2020, 5(3): 229
doi: 10.1038/s41578-019-0165-5
|
| [8] |
Zheng Y, Yao Y Z, Ou J H, et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures [J]. Chem. Soc. Rev., 2020, 49(23): 8790
doi: 10.1039/d0cs00305k
pmid: 33107869
|
| [9] |
Liang Y L, Dong H, Aurbach D, et al. Current status and future directions of multivalent metal-ion batteries [J]. Nat. Energy, 2020, 5(9): 646
doi: 10.1038/s41560-020-0655-0
|
| [10] |
Wang X H, Du T X, Dong X F, et al. Application of advanced Wide-Temperature range and flame retardant "Leaf-Vein" Structured functionality composite Quasi-Solid-State electrolyte [J]. Energy Storage Mater., 2024, 68: 103355
|
| [11] |
Fan X Y, Zhong C, Liu J, et al. Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes [J]. Chem. Rev., 2022, 122(23): 17155
doi: 10.1021/acs.chemrev.2c00196
pmid: 36239919
|
| [12] |
An H W, Li M L, Liu Q S, et al. Strong Lewis-acid coordinated PEO electrolyte achieves 4.8 V-class all-solid-state batteries over 580 Wh kg-1 [J]. Nat. Commun., 2024, 15(1): 9150
doi: 10.1038/s41467-024-53094-8
|
| [13] |
Shen M N, Wei Y, Ge M, et al. Oxygenated carbon nitride-based high-energy-density lithium-metal batteries [J]. Interdiscip. Mater., 2024, 3(5): 791
|
| [14] |
Liu J, Lin H S T, Li H T, et al. In situ polymerization derived from PAN-based porous membrane realizing double-stabilized interface and high ionic conductivity for lithium-metal batteries [J]. ACS Appl. Mater. Interfaces, 2024, 16(16): 21264
|
| [15] |
Liu S L, Liu W Y, Ba D L, et al. Filler-integrated composite polymer electrolyte for solid-state lithium batteries [J]. Adv. Mater., 2023, 35(2): 2110423
doi: 10.1002/adma.v35.2
|
| [16] |
Liang H M, Wang L, Wang A P, et al. Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review [J]. Nano-Micro Lett., 2023, 15(1): 42
doi: 10.1007/s40820-022-00996-1
pmid: 36719552
|
| [17] |
Dirican M, Yan C Y, Zhu P, et al. Composite solid electrolytes for all-solid-state lithium batteries [J]. Mater. Sci. Eng., 2019, 136R: 27
|
| [18] |
Yu Q J, Jiang K C, Yu C L, et al. Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries [J]. Chin. Chem. Lett., 2021, 32(9): 2659
doi: 10.1016/j.cclet.2021.03.032
|
| [19] |
Zhang Q, Wang Q, Huang S S, et al. Preparation and electrochemical study of PVDF-HFP/LATP/g-C3N4 composite polymer electrolyte membrane [J]. Inorg. Chem. Commun., 2021, 131: 108793
doi: 10.1016/j.inoche.2021.108793
|
| [20] |
Sun Z J, Li Y H, Zhang S Y, et al. g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability [J]. J. Mater. Chem., 2019, 7A: 11069
|
| [21] |
Hao X X, Chen K, Tang Y P, et al. 2-Dimensional g-C3N4 nanosheets modified LATP-based “Polymer-in-Ceramic” electrolyte for solid-state lithium batteries [J]. J. Alloy. Compd., 2023, 942: 169064
doi: 10.1016/j.jallcom.2023.169064
|
| [22] |
Majdoub M, Anfar Z, Amedlous A. Emerging chemical functionalization of g-C3N4: covalent/noncovalent modifications and applications [J]. ACS Nano, 2020, 14: 12390
doi: 10.1021/acsnano.0c06116
|
| [23] |
Song J Z, Qi H Y, Yuan W S, et al. Graphitic carbon nitride (g-C3N4) as an electrolyte additive boosts fast-charging and stable cycling of graphite anodes for Li-ion batteries [J]. J. Mater. Chem., 2025, 13A: 1964
|
| [24] |
Han Q Y, Wang S Q, Wang L G, et al. Exploiting Iodine redox chemistry for achieving high-capacity and durable PEO-based all-solid-state LiFePO4/Li batteries [J]. Adv. Energy Mater., 2023, 13(36): 2301462
doi: 10.1002/aenm.v13.36
|
| [25] |
Huang Y, Chen B, Duan J, et al. Graphitic carbon nitride (g-C3N4): an interface enabler for solid-state lithium metal batteries [J]. Angew. Chem.-Int. Edit., 2020, 59(9): 3699
doi: 10.1002/anie.v59.9
|
| [26] |
Hu J L, Chen K Y, Yao Z G, et al. Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte [J]. Sci. Bull., 2021, 66(7): 694
doi: 10.1016/j.scib.2020.11.017
pmid: 36654445
|
| [27] |
Mansor N, Miller T S, Dedigama I, et al. Graphitic carbon nitride as a catalyst support in fuel cells and electrolyzers [J]. Electrochim. Acta, 2016, 222: 44
doi: 10.1016/j.electacta.2016.11.008
|
| [28] |
Liu H L, Pan H G, Yan M, et al. Extraordinary ionic conductivity excited by hierarchical ion-transport pathways in MOF-based quasi-solid electrolytes [J]. Adv. Mater., 2023, 35(26): 2300888
doi: 10.1002/adma.v35.26
|
| [29] |
Li B, Wang C H, Yu R Z, et al. Recent progress on metal-organic framework/polymer composite electrolytes for solid-state lithium metal batteries: ion transport regulation and interface engineering [J]. Energy Environ. Sci., 2024, 17(5): 1854
doi: 10.1039/D3EE02705H
|
| [30] |
Yang X Y, Liu J X, Pei N B, et al. The critical role of fillers in composite polymer electrolytes for lithium battery [J]. Nano-Micro Lett., 2023, 15(1): 74
doi: 10.1007/s40820-023-01051-3
pmid: 36976386
|
| [31] |
Park S S, Tulchinsky Y, Dincă M. Single-ion Li+, Na+, and Mg2+ solid electrolytes supported by a mesoporous anionic Cu-azolate metal-organic framework [J]. J. Am. Chem. Soc., 2017, 139(38): 13260
doi: 10.1021/jacs.7b06197
|
| [32] |
Wang Y, Wang X C, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry [J]. Angew. Chem.-Int. Edit., 2012, 51(1): 68
doi: 10.1002/anie.v51.1
|
| [33] |
Jun Y S, Lee E Z, Wang X C, et al. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres [J]. Adv. Funct. Mater., 2013, 23(29): 3661
doi: 10.1002/adfm.v23.29
|
| [34] |
Bao D Q, Tao Y, Zhong Y H, et al. High-performance dual-salt plastic crystal electrolyte enabled by succinonitrile-regulated porous polymer host [J]. Adv. Funct. Mater., 2023, 33(17): 2213211
doi: 10.1002/adfm.v33.17
|
| [35] |
Yang P, Gao X W, Tian X L, et al. Upgrading traditional organic electrolytes toward future lithium metal batteries: a hierarchical nano-sio2-supported gel polymer electrolyte [J]. ACS Energy Lett., 2020, 5(5): 1681
doi: 10.1021/acsenergylett.0c00412
|
| [36] |
Zhang Q Q, Liu K, Ding F, et al. Recent advances in solid polymer electrolytes for lithium batteries [J]. Nano Res., 2017, 10: 4139
doi: 10.1007/s12274-017-1763-4
|
| [37] |
Zhao Y, Wang L, Zhou Y N, et al. Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries [J]. Adv. Sci., 2021, 8(7): 2003675
doi: 10.1002/advs.v8.7
|
| [38] |
Xu R, Cheng X B, Yan C, et al. Artificial Interphases for highly stable lithium metal anode [J]. Matter, 2019, 1(2): 317
doi: 10.1016/j.matt.2019.05.016
|
| [39] |
Wan H L, Wang Z Y, Liu S F, et al. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design [J]. Nat. Energy, 2023, 8(5): 473
doi: 10.1038/s41560-023-01231-w
|
| [40] |
Liu J, Bao Z N, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries [J]. Nat. Energy, 2019, 4(3): 180
doi: 10.1038/s41560-019-0338-x
|
| [41] |
Ye L H, Li X. A dynamic stability design strategy for lithium metal solid state batteries [J]. Nature, 2021, 593(7858): 218
doi: 10.1038/s41586-021-03486-3
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|