|
|
|
| Preparation and Phase Formation Mechanism of β-ZnS Transparent Ceramics |
LI Hongxiao, LI Huanyong( ), ZHANG Xuan |
| School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China |
|
Cite this article:
LI Hongxiao, LI Huanyong, ZHANG Xuan. Preparation and Phase Formation Mechanism of β-ZnS Transparent Ceramics. Chinese Journal of Materials Research, 2025, 39(12): 927-934.
|
|
|
Abstract ZnS transparent ceramics with free wurtzite phase α-ZnS were successfully prepared through hot-pressing sintering by 30 MPa at 830 oC, using the as-synthesized β-ZnS nanopowders and KX (X = Br, I, Cl) as raw material. It was found that halides KX, as the additives, play the crucial role in the sintering process of ZnS transparent ceramics. Both halides KBr and KI not only promote the rapid growth of grain by generating a liquid phase, but also effectively inhibit the size-induced low-temperature phase transition of the nanopowder cubic phase β-ZnS to the hexagonal one. However, KCl promotes the formation of α-ZnS with an adverse impact on ZnS transparent ceramics. A mechanism of alkali metal halides KX inhibiting the size-induced low-temperature phase transition of ZnS nanoparticles was rationally proposed by combining X-ray diffraction results, microstructure, composition distribution and photoluminescence spectra of ZnS ceramics with the ionic radii of Br-, I-, and Cl-.
|
|
Received: 31 December 2024
|
|
|
| Fund: National Natural Science Foundation of China(51572220);Natural Science Basic Research Program of Shaanxi(2021JM-057) |
Corresponding Authors:
LI Huanyong, Tel: 13572263608, E-mail: lihuanyong@nwpu.edu.cn
|
| [1] |
Xiao Z H, Yu S J, Li Y M, et al. Materials development and potential applications of transparent ceramics: a review [J]. Mater. Sci. Eng., 2020, 139R: 100518
|
| [2] |
Durand G R, Hakmeh N, Dorcet V, et al. New insights in structural characterization of transparent ZnS ceramics hot-pressed from nanocrystalline powders synthesized by combustion method [J]. J. Eur. Ceram. Soc., 2019, 39(10): 3094
doi: 10.1016/j.jeurceramsoc.2019.03.033
|
| [3] |
Choi B H, Kim D S, Lee K T, et al. Highly IR transparent ZnS ceramics sintered by vacuum hot press using hydrothermally produced ZnS nanopowders [J]. J. Am. Ceram. Soc., 2020, 103(4): 2663
doi: 10.1111/jace.v103.4
|
| [4] |
Xu L G, Guo S, Ralchenko V, et al. Progress in infrared transparencies under opto electro thermo and mechanical environments [J]. Surf. Sci. Technol., 2023, 1(1): 2
doi: 10.1007/s44251-023-00002-9
|
| [5] |
Li Y Y, Wu Y Q. Transparent and luminescent ZnS ceramics consolidated by vacuum hot pressing method [J]. J. Am. Ceram. Soc., 2015, 98(10): 2972
doi: 10.1111/jace.2015.98.issue-10
|
| [6] |
Lee K T, Choi B H, Woo J U, et al. Microstructural and optical properties of the ZnS ceramics sintered by vacuum hot-pressing using hydrothermally synthesized ZnS powders [J]. J. Eur. Ceram. Soc., 2018, 38(12): 4237
doi: 10.1016/j.jeurceramsoc.2018.05.018
|
| [7] |
Qadri S B, Skelton E F, Hsu D, et al. Size-induced transition-temperature reduction in nanoparticles of ZnS [J]. Phys. Rev., 1999, 60B(13) : 9191
|
| [8] |
Li C Y, Pan Y B, Kou H M, et al. Densification behavior, phase transition, and preferred orientation of hot-pressed ZnS ceramics from precipitated nanopowders [J]. J. Am. Ceram. Soc., 2016, 99(9): 3060
doi: 10.1111/jace.2016.99.issue-9
|
| [9] |
Li C Y, Xie T F, Dai J W, et al. Hot-pressing of zinc sulfide infrared transparent ceramics from nanopowders synthesized by the solvothermal method [J]. Ceram. Int., 2018, 44(1): 747
doi: 10.1016/j.ceramint.2017.09.242
|
| [10] |
Yeo S Y, Kwon T H, Park C S, et al. Sintering and optical properties of transparent ZnS ceramics by pre-heating treatment temperature [J]. J. Electroceram., 2018, 41(1): 1
doi: 10.1007/s10832-018-0137-y
|
| [11] |
Li H Y, Ren X Y, Xi P F, et al. Influence of NaX (X = Cl, Br, I) additive on phase composition, thermostability and high infrared performances of γ-La2S3 transparent ceramics [J]. Ceram. Int., 2020, 46(7): 9145
doi: 10.1016/j.ceramint.2019.12.164
|
| [12] |
Huang F, Banfield J F. Size-dependent phase transformation kinetics in nanocrystalline ZnS [J]. J. Am. Chem. Soc., 2005, 127(12): 4523
pmid: 15783236
|
| [13] |
Xie Y C, Wang C B, Tang Y Q. Dispersion capacities of KCl and NaCl in zeolites [J]. Acta Phy. Chim. Sin., 1993, 9(6): 735
|
|
谢有畅, 汪传宝, 唐有祺. KCl、NaCl在分子筛载体上的分散阈值研究 [J]. 物理化学学报, 1993, 9(6): 735
|
| [14] |
Xie Y C, Tang Y Q, Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: applications to heterogeneous catalysis [J]. Adv. Catal., 1990, 37: 1
|
| [15] |
Wang K X, Yang X W, Zhao B Y, et al. 7Li MAS NMR studies on LiCl/γ-Al2O3 [J]. Acta Phy. Chim. Sin., 1997, 13(3): 196
|
|
王凯旋, 杨夏万, 赵璧英 等. LiCl/γ-Al2O3的7Li MAS NMR研究 [J]. 物理化学学报, 1997, 13(3): 196
|
| [16] |
Wachs I E. Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials [J]. Catal. Today, 2005, 100(1-2): 79
doi: 10.1016/j.cattod.2004.12.019
|
| [17] |
Liang L H, Shen C M, Du S X, et al. Increase in thermal stability induced by organic coatings on nanoparticles [J]. Phys. Rev., 2004, 70B(20) : 205419
|
| [18] |
Dick K, Dhanasekaran T, Zhang Z Y, et al. Size-dependent melting of silica-encapsulated gold nanoparticles [J]. J. Am. Chem. Soc., 2002, 124(10): 2312
pmid: 11878986
|
| [19] |
Chen S, Liu W M. Preparation and characterization of surface-coated ZnS nanoparticles [J]. Langmuir, 1999, 15(23): 8100
doi: 10.1021/la9906875
|
| [20] |
Zhang H Z, Huang F, Gilbert B, et al. Molecular dynamics simulations, thermodynamic analysis, and experimental study of phase stability of zinc sulfide nanoparticles [J]. J. Phys. Chem., 2003, 107B: 13051
|
| [21] |
Tiwary C S, Sricastava C, Kumbhakar P. Onset of sphalerite to wurtzite transformation in ZnS nanoparticles [J]. J. Appl. Phys., 2011, 110(3): 034908
|
| [22] |
Dutta B, Deb D, Bhattacharya S. Electroactive phase nucleation and isothermal crystallization kinetics in ionic liquid-functionalized ZnS nanoparticle-ingrained P(VDF-HFP) copolymer nanocomposites [J]. J. Mater. Sci., 2019, 54(4): 2990
doi: 10.1007/s10853-018-3027-4
|
| [23] |
Prior K A, Bradford C, Davidson I A, et al. Metastable II-VI sulphides: Growth, characterization and stability [J]. J. Cryst. Growth, 2011, 323(1): 114121
|
| [24] |
Gupta S K, Mao Y B. Recent developments on molten salt synthesis of inorganic nanomaterials: a review [J]. J. Phys. Chem., 2021, 125C(12) : 6508
|
| [25] |
Sahraei R, Aval G M, Goudarzi A. Compositional, structural, and optical study of nanocrystalline ZnS thin films prepared by a new chemical bath deposition route [J]. J. Alloy. Compd., 2008, 466(1-2): 488
doi: 10.1016/j.jallcom.2007.11.127
|
| [26] |
Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-Free nanocrystals [J]. Science, 1998, 281(5379): 969
pmid: 9703506
|
| [27] |
Hapiuk D, Masenelli B, Masenelli-Varlot K, et al. Oriented attachment of ZnO nanocrystals [J]. J. Phys. Chem., 2013, 117C(19) : 10220
|
| [28] |
Sarkar H, Raj A, Kumar L, et al. Bulk-sized (~50 μm) faceted wurtzite crystals via non-classical mesocrystalline growth assembly [J]. J. Mater. Res., 2024, 39: 3294
doi: 10.1557/s43578-024-01463-w
|
| [29] |
Ghica D, Nistor S V, Nistor L C, et al. Structural phase transformations in annealed cubic ZnS nanocrystals [J]. J. Nanopart. Res., 2011, 13(9): 4325
doi: 10.1007/s11051-011-0379-y
|
| [30] |
Ooshita K, Inoue T, Sekiguchi T, et al. Flux growth of ZnS single crystals and their characterization [J]. J. Cryst. Growth, 2004, 267(1-2): 74
doi: 10.1016/j.jcrysgro.2004.03.067
|
| [31] |
Zahabi S, Jamali H, Bakhshi S R, et al. Comparing infrared transmission of zinc sulfide nanostructure ceramic produced via hot pressure and spark plasma sintering methods [J]. Int. J. Appl. Ceram. Technol., 2022, 19(3): 1319
doi: 10.1111/ijac.v19.3
|
| [32] |
Liu M Y, Wang S F, Wang C H, et al. Understanding of electronic and optical properties of ZnS with high concentration of point defects induced by hot pressing process: The first-principles calculations [J]. Comput. Mater. Sci., 2020, 174: 109492
doi: 10.1016/j.commatsci.2019.109492
|
| [33] |
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Cryst. Sect. A: Found. Cryst., 1976, 32(5): 751
|
| [34] |
Pelleg J. Diffusion in Ceramics [M]. Cham: Springer, 2016: 86
|
| [35] |
Kang S J L. Sintering: Densification, Grain Growth and Microstructure [M]. Amsterdam: Butterworth-Heinemann, 2005: 173
|
| [36] |
Parker S G, Pinnell J E. Molten flux growth of cubic zinc sulfide crystals [J]. J. Cryst. Growth, 1968, 3-4: 490
doi: 10.1016/0022-0248(68)90207-8
|
| [37] |
Zhang W, Zeng X H, Liu H F, et al. Synthesis and investigation of blue and green emissions of ZnS ceramics [J]. J. Lumin., 2013, 134: 498
doi: 10.1016/j.jlumin.2012.07.039
|
| [38] |
Singhal S, Chawla A K, Nagar S, et al. Photoluminescence measurements in the phase transition region of Zn1-x CdxS films [J]. J. Nanopart. Res., 2010, 12(4): 1415
doi: 10.1007/s11051-009-9687-x
|
| [39] |
Hong J W, Jung W K, Choi D H. Effect of porosity and hexagonality on the infrared transmission of spark plasma sintered ZnS ceramics [J]. Ceram. Int., 2020, 46(10): 16285
doi: 10.1016/j.ceramint.2020.03.185
|
| [40] |
Chlique C, Merdrignac-Conanec O, Hakmeh N, et al. Transparent ZnS ceramics by sintering of high purity monodisperse nanopowders [J]. J. Am. Ceram. Soc., 2013, 96(10): 3070
doi: 10.1111/jace.2013.96.issue-10
|
| [41] |
Chen Y Z, Zhang L, Zhang J, et al. Fabrication of transparent ZnS ceramic by optimizing the heating rate in spark plasma sintering process [J]. Opt. Mater., 2015, 50: 36
doi: 10.1016/j.optmat.2015.03.058
|
| [42] |
Abdi A, Davar F. Hot pressing sintering of zinc sulfide microsphere decorated with nanorods synthesized by the simple refluxing method [J]. Ceram. Int., 2020, 46(13): 21107
doi: 10.1016/j.ceramint.2020.05.186
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|